Reliability evaluation of logic circuits using probabilistic gate models

Logic circuits built using nanoscale technologies have significant reliability limitations due to fundamental physical and manufacturing constraints of their constituent devices. This paper presents a probabilistic gate model (PGM), which relates the output probability to the error and input probabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronics and reliability 2011-02, Vol.51 (2), p.468-476
Hauptverfasser: Han, Jie, Chen, Hao, Boykin, Erin, Fortes, José
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 2
container_start_page 468
container_title Microelectronics and reliability
container_volume 51
creator Han, Jie
Chen, Hao
Boykin, Erin
Fortes, José
description Logic circuits built using nanoscale technologies have significant reliability limitations due to fundamental physical and manufacturing constraints of their constituent devices. This paper presents a probabilistic gate model (PGM), which relates the output probability to the error and input probabilities of an unreliable logic gate. The PGM is used to obtain computational algorithms, one being approximate and the other accurate, for the evaluation of circuit reliability. The complexity of the approximate algorithm, which does not consider dependencies among signals, increases linearly with the number of gates in a circuit. The accurate algorithm, which accounts for signal dependencies due to reconvergent fanouts and/or correlated inputs, has a worst-case complexity that is exponential in the numbers of dependent reconvergent fanouts and correlated inputs. By leveraging the fact that many large circuits consist of common logic modules, a modular approach that hierarchically decomposes a circuit into smaller modules and subsequently applies the accurate PGM algorithm to each module, is further proposed. Simulation results are presented for applications on the LGSynth91 and ISCAS85 benchmark circuits. It is shown that the modular PGM approach provides highly accurate results with a moderate computational complexity. It can further be embedded into an early design flow and is scalable for use in the reliability evaluation of large circuits.
doi_str_mv 10.1016/j.microrel.2010.07.154
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864418814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026271410004270</els_id><sourcerecordid>864418814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-f6e65eeb2f61e5657c01e53341d4e1cb6c50783d2740e6356f6cfc058d65e043</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOKdfQfoiPrXetWnSvSlDnTAQZA--hSy9joysnUk72Lc3c9NXnw5yv__d5cfYLUKGgOJhnW2s8Z0nl-UQH0FmWPIzNsJK5umE4-c5GwHkIs0l8kt2FcIaACQgjtjsg5zVS-tsv09op92ge9u1SdckrltZkxjrzWD7kAzBtqtk67vlDx762FzpnpJNV5ML1-yi0S7QzamO2eLleTGdpfP317fp0zw1heR92ggSJdEybwRSKUppINai4FhzQrMUpgRZFXUuOZAoStEI0xgoqzrGgBdjdn8cGw_5Gij0amODIed0S90QVCU4x6rCAymOZHQTgqdGbb3daL9XCOogTq3Vrzh1EKdAqiguBu9OK3Qw2jVet8aGv3ReVHmJOInc45GLv6edJa-CsdQaqq0n06u6s_-t-ga294gH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864418814</pqid></control><display><type>article</type><title>Reliability evaluation of logic circuits using probabilistic gate models</title><source>Access via ScienceDirect (Elsevier)</source><creator>Han, Jie ; Chen, Hao ; Boykin, Erin ; Fortes, José</creator><creatorcontrib>Han, Jie ; Chen, Hao ; Boykin, Erin ; Fortes, José</creatorcontrib><description>Logic circuits built using nanoscale technologies have significant reliability limitations due to fundamental physical and manufacturing constraints of their constituent devices. This paper presents a probabilistic gate model (PGM), which relates the output probability to the error and input probabilities of an unreliable logic gate. The PGM is used to obtain computational algorithms, one being approximate and the other accurate, for the evaluation of circuit reliability. The complexity of the approximate algorithm, which does not consider dependencies among signals, increases linearly with the number of gates in a circuit. The accurate algorithm, which accounts for signal dependencies due to reconvergent fanouts and/or correlated inputs, has a worst-case complexity that is exponential in the numbers of dependent reconvergent fanouts and correlated inputs. By leveraging the fact that many large circuits consist of common logic modules, a modular approach that hierarchically decomposes a circuit into smaller modules and subsequently applies the accurate PGM algorithm to each module, is further proposed. Simulation results are presented for applications on the LGSynth91 and ISCAS85 benchmark circuits. It is shown that the modular PGM approach provides highly accurate results with a moderate computational complexity. It can further be embedded into an early design flow and is scalable for use in the reliability evaluation of large circuits.</description><identifier>ISSN: 0026-2714</identifier><identifier>EISSN: 1872-941X</identifier><identifier>DOI: 10.1016/j.microrel.2010.07.154</identifier><identifier>CODEN: MCRLAS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Circuit properties ; Circuits ; Complexity ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Gates (circuits) ; Logic ; Mathematical models ; Modules ; Nanostructure</subject><ispartof>Microelectronics and reliability, 2011-02, Vol.51 (2), p.468-476</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-f6e65eeb2f61e5657c01e53341d4e1cb6c50783d2740e6356f6cfc058d65e043</citedby><cites>FETCH-LOGICAL-c374t-f6e65eeb2f61e5657c01e53341d4e1cb6c50783d2740e6356f6cfc058d65e043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.microrel.2010.07.154$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23825119$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Jie</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Boykin, Erin</creatorcontrib><creatorcontrib>Fortes, José</creatorcontrib><title>Reliability evaluation of logic circuits using probabilistic gate models</title><title>Microelectronics and reliability</title><description>Logic circuits built using nanoscale technologies have significant reliability limitations due to fundamental physical and manufacturing constraints of their constituent devices. This paper presents a probabilistic gate model (PGM), which relates the output probability to the error and input probabilities of an unreliable logic gate. The PGM is used to obtain computational algorithms, one being approximate and the other accurate, for the evaluation of circuit reliability. The complexity of the approximate algorithm, which does not consider dependencies among signals, increases linearly with the number of gates in a circuit. The accurate algorithm, which accounts for signal dependencies due to reconvergent fanouts and/or correlated inputs, has a worst-case complexity that is exponential in the numbers of dependent reconvergent fanouts and correlated inputs. By leveraging the fact that many large circuits consist of common logic modules, a modular approach that hierarchically decomposes a circuit into smaller modules and subsequently applies the accurate PGM algorithm to each module, is further proposed. Simulation results are presented for applications on the LGSynth91 and ISCAS85 benchmark circuits. It is shown that the modular PGM approach provides highly accurate results with a moderate computational complexity. It can further be embedded into an early design flow and is scalable for use in the reliability evaluation of large circuits.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Circuits</subject><subject>Complexity</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gates (circuits)</subject><subject>Logic</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Nanostructure</subject><issn>0026-2714</issn><issn>1872-941X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAQx4MoOKdfQfoiPrXetWnSvSlDnTAQZA--hSy9joysnUk72Lc3c9NXnw5yv__d5cfYLUKGgOJhnW2s8Z0nl-UQH0FmWPIzNsJK5umE4-c5GwHkIs0l8kt2FcIaACQgjtjsg5zVS-tsv09op92ge9u1SdckrltZkxjrzWD7kAzBtqtk67vlDx762FzpnpJNV5ML1-yi0S7QzamO2eLleTGdpfP317fp0zw1heR92ggSJdEybwRSKUppINai4FhzQrMUpgRZFXUuOZAoStEI0xgoqzrGgBdjdn8cGw_5Gij0amODIed0S90QVCU4x6rCAymOZHQTgqdGbb3daL9XCOogTq3Vrzh1EKdAqiguBu9OK3Qw2jVet8aGv3ReVHmJOInc45GLv6edJa-CsdQaqq0n06u6s_-t-ga294gH</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Han, Jie</creator><creator>Chen, Hao</creator><creator>Boykin, Erin</creator><creator>Fortes, José</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110201</creationdate><title>Reliability evaluation of logic circuits using probabilistic gate models</title><author>Han, Jie ; Chen, Hao ; Boykin, Erin ; Fortes, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-f6e65eeb2f61e5657c01e53341d4e1cb6c50783d2740e6356f6cfc058d65e043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Circuits</topic><topic>Complexity</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gates (circuits)</topic><topic>Logic</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Nanostructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Jie</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Boykin, Erin</creatorcontrib><creatorcontrib>Fortes, José</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronics and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Jie</au><au>Chen, Hao</au><au>Boykin, Erin</au><au>Fortes, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability evaluation of logic circuits using probabilistic gate models</atitle><jtitle>Microelectronics and reliability</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>51</volume><issue>2</issue><spage>468</spage><epage>476</epage><pages>468-476</pages><issn>0026-2714</issn><eissn>1872-941X</eissn><coden>MCRLAS</coden><abstract>Logic circuits built using nanoscale technologies have significant reliability limitations due to fundamental physical and manufacturing constraints of their constituent devices. This paper presents a probabilistic gate model (PGM), which relates the output probability to the error and input probabilities of an unreliable logic gate. The PGM is used to obtain computational algorithms, one being approximate and the other accurate, for the evaluation of circuit reliability. The complexity of the approximate algorithm, which does not consider dependencies among signals, increases linearly with the number of gates in a circuit. The accurate algorithm, which accounts for signal dependencies due to reconvergent fanouts and/or correlated inputs, has a worst-case complexity that is exponential in the numbers of dependent reconvergent fanouts and correlated inputs. By leveraging the fact that many large circuits consist of common logic modules, a modular approach that hierarchically decomposes a circuit into smaller modules and subsequently applies the accurate PGM algorithm to each module, is further proposed. Simulation results are presented for applications on the LGSynth91 and ISCAS85 benchmark circuits. It is shown that the modular PGM approach provides highly accurate results with a moderate computational complexity. It can further be embedded into an early design flow and is scalable for use in the reliability evaluation of large circuits.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.microrel.2010.07.154</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-2714
ispartof Microelectronics and reliability, 2011-02, Vol.51 (2), p.468-476
issn 0026-2714
1872-941X
language eng
recordid cdi_proquest_miscellaneous_864418814
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Applied sciences
Circuit properties
Circuits
Complexity
Digital circuits
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Gates (circuits)
Logic
Mathematical models
Modules
Nanostructure
title Reliability evaluation of logic circuits using probabilistic gate models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20evaluation%20of%20logic%20circuits%20using%20probabilistic%20gate%20models&rft.jtitle=Microelectronics%20and%20reliability&rft.au=Han,%20Jie&rft.date=2011-02-01&rft.volume=51&rft.issue=2&rft.spage=468&rft.epage=476&rft.pages=468-476&rft.issn=0026-2714&rft.eissn=1872-941X&rft.coden=MCRLAS&rft_id=info:doi/10.1016/j.microrel.2010.07.154&rft_dat=%3Cproquest_cross%3E864418814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864418814&rft_id=info:pmid/&rft_els_id=S0026271410004270&rfr_iscdi=true