Support Vector Machines for Brain Tumours Cells Classification

This research is a study applied to the supervised classification of brain tumours by a method resulting from the artificial intelligence which is the Support Vector Machines. The artificial intelligence quickly moved these last decades, with the evolution of the cerebral imagery to diagnose certain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied sciences (Asian Network for Scientific Information) 2010-08, Vol.10 (16), p.1755-1761
Hauptverfasser: Bentaouza, C M, Benyettou, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1761
container_issue 16
container_start_page 1755
container_title Journal of applied sciences (Asian Network for Scientific Information)
container_volume 10
creator Bentaouza, C M
Benyettou, M
description This research is a study applied to the supervised classification of brain tumours by a method resulting from the artificial intelligence which is the Support Vector Machines. The artificial intelligence quickly moved these last decades, with the evolution of the cerebral imagery to diagnose certain diseases such as the brain tumours by techniques like magnetic resonance imagery in order to treat this disease by the surgery and microscopy to detect the type and the rank of the tumour. The results obtained by the Support Vector Machines are satisfactory from the point of view of time of learning and convergence, which have in particular tendency to learn data too much, thus providing good performances in generalization. On the other hand the Support Vector Machines give automatically a reliable result.
doi_str_mv 10.3923/jas.2010.1755.1761
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864417818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762118590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-e1462900227a6faf97afbdf67710255f75f16b17efc3f52a2da6a2dded8fdfe33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhj2ARPn4A0zZYEnx2bGdLEhQ8SUVMVBYLdfxCVdpHOxk4N_jqMws7-mVnjudHkIugS55w_jNzqQlo7mBEiKHhCOygBpYKaSoTshpSjtKKy4btSC379MwhDgWn86OIRavxn753qUCc7mPxvfFZtqHKaZi5bouZ2dS8uitGX3oz8kxmi65i795Rj4eHzar53L99vSyuluXljE1lg4qyRpKczESDTbK4LZFqRRQJgQqgSC3oBxajoIZ1hqZo3VtjS06zs_I1eHuEMP35NKo9z7Z_JDpXZiSrmVVgaqhzuT1v2T2wQBq0dCMsgNqY0gpOtRD9HsTfzRQPavUWaWeVepZ5bwK_BfkeWnZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762118590</pqid></control><display><type>article</type><title>Support Vector Machines for Brain Tumours Cells Classification</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Science Alert</source><creator>Bentaouza, C M ; Benyettou, M</creator><creatorcontrib>Bentaouza, C M ; Benyettou, M</creatorcontrib><description>This research is a study applied to the supervised classification of brain tumours by a method resulting from the artificial intelligence which is the Support Vector Machines. The artificial intelligence quickly moved these last decades, with the evolution of the cerebral imagery to diagnose certain diseases such as the brain tumours by techniques like magnetic resonance imagery in order to treat this disease by the surgery and microscopy to detect the type and the rank of the tumour. The results obtained by the Support Vector Machines are satisfactory from the point of view of time of learning and convergence, which have in particular tendency to learn data too much, thus providing good performances in generalization. On the other hand the Support Vector Machines give automatically a reliable result.</description><identifier>ISSN: 1812-5654</identifier><identifier>DOI: 10.3923/jas.2010.1755.1761</identifier><language>eng</language><subject>Artificial intelligence ; Brain ; Classification ; Diseases ; Expert systems ; Imagery ; Support vector machines ; Tumours</subject><ispartof>Journal of applied sciences (Asian Network for Scientific Information), 2010-08, Vol.10 (16), p.1755-1761</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-e1462900227a6faf97afbdf67710255f75f16b17efc3f52a2da6a2dded8fdfe33</citedby><cites>FETCH-LOGICAL-c227t-e1462900227a6faf97afbdf67710255f75f16b17efc3f52a2da6a2dded8fdfe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4110,27901,27902</link.rule.ids></links><search><creatorcontrib>Bentaouza, C M</creatorcontrib><creatorcontrib>Benyettou, M</creatorcontrib><title>Support Vector Machines for Brain Tumours Cells Classification</title><title>Journal of applied sciences (Asian Network for Scientific Information)</title><description>This research is a study applied to the supervised classification of brain tumours by a method resulting from the artificial intelligence which is the Support Vector Machines. The artificial intelligence quickly moved these last decades, with the evolution of the cerebral imagery to diagnose certain diseases such as the brain tumours by techniques like magnetic resonance imagery in order to treat this disease by the surgery and microscopy to detect the type and the rank of the tumour. The results obtained by the Support Vector Machines are satisfactory from the point of view of time of learning and convergence, which have in particular tendency to learn data too much, thus providing good performances in generalization. On the other hand the Support Vector Machines give automatically a reliable result.</description><subject>Artificial intelligence</subject><subject>Brain</subject><subject>Classification</subject><subject>Diseases</subject><subject>Expert systems</subject><subject>Imagery</subject><subject>Support vector machines</subject><subject>Tumours</subject><issn>1812-5654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhj2ARPn4A0zZYEnx2bGdLEhQ8SUVMVBYLdfxCVdpHOxk4N_jqMws7-mVnjudHkIugS55w_jNzqQlo7mBEiKHhCOygBpYKaSoTshpSjtKKy4btSC379MwhDgWn86OIRavxn753qUCc7mPxvfFZtqHKaZi5bouZ2dS8uitGX3oz8kxmi65i795Rj4eHzar53L99vSyuluXljE1lg4qyRpKczESDTbK4LZFqRRQJgQqgSC3oBxajoIZ1hqZo3VtjS06zs_I1eHuEMP35NKo9z7Z_JDpXZiSrmVVgaqhzuT1v2T2wQBq0dCMsgNqY0gpOtRD9HsTfzRQPavUWaWeVepZ5bwK_BfkeWnZ</recordid><startdate>20100815</startdate><enddate>20100815</enddate><creator>Bentaouza, C M</creator><creator>Benyettou, M</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TK</scope></search><sort><creationdate>20100815</creationdate><title>Support Vector Machines for Brain Tumours Cells Classification</title><author>Bentaouza, C M ; Benyettou, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-e1462900227a6faf97afbdf67710255f75f16b17efc3f52a2da6a2dded8fdfe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial intelligence</topic><topic>Brain</topic><topic>Classification</topic><topic>Diseases</topic><topic>Expert systems</topic><topic>Imagery</topic><topic>Support vector machines</topic><topic>Tumours</topic><toplevel>online_resources</toplevel><creatorcontrib>Bentaouza, C M</creatorcontrib><creatorcontrib>Benyettou, M</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bentaouza, C M</au><au>Benyettou, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Support Vector Machines for Brain Tumours Cells Classification</atitle><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle><date>2010-08-15</date><risdate>2010</risdate><volume>10</volume><issue>16</issue><spage>1755</spage><epage>1761</epage><pages>1755-1761</pages><issn>1812-5654</issn><abstract>This research is a study applied to the supervised classification of brain tumours by a method resulting from the artificial intelligence which is the Support Vector Machines. The artificial intelligence quickly moved these last decades, with the evolution of the cerebral imagery to diagnose certain diseases such as the brain tumours by techniques like magnetic resonance imagery in order to treat this disease by the surgery and microscopy to detect the type and the rank of the tumour. The results obtained by the Support Vector Machines are satisfactory from the point of view of time of learning and convergence, which have in particular tendency to learn data too much, thus providing good performances in generalization. On the other hand the Support Vector Machines give automatically a reliable result.</abstract><doi>10.3923/jas.2010.1755.1761</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1812-5654
ispartof Journal of applied sciences (Asian Network for Scientific Information), 2010-08, Vol.10 (16), p.1755-1761
issn 1812-5654
language eng
recordid cdi_proquest_miscellaneous_864417818
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Science Alert
subjects Artificial intelligence
Brain
Classification
Diseases
Expert systems
Imagery
Support vector machines
Tumours
title Support Vector Machines for Brain Tumours Cells Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Support%20Vector%20Machines%20for%20Brain%20Tumours%20Cells%20Classification&rft.jtitle=Journal%20of%20applied%20sciences%20(Asian%20Network%20for%20Scientific%20Information)&rft.au=Bentaouza,%20C%20M&rft.date=2010-08-15&rft.volume=10&rft.issue=16&rft.spage=1755&rft.epage=1761&rft.pages=1755-1761&rft.issn=1812-5654&rft_id=info:doi/10.3923/jas.2010.1755.1761&rft_dat=%3Cproquest_cross%3E1762118590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762118590&rft_id=info:pmid/&rfr_iscdi=true