Support Vector Machines for Brain Tumours Cells Classification
This research is a study applied to the supervised classification of brain tumours by a method resulting from the artificial intelligence which is the Support Vector Machines. The artificial intelligence quickly moved these last decades, with the evolution of the cerebral imagery to diagnose certain...
Gespeichert in:
Veröffentlicht in: | Journal of applied sciences (Asian Network for Scientific Information) 2010-08, Vol.10 (16), p.1755-1761 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1761 |
---|---|
container_issue | 16 |
container_start_page | 1755 |
container_title | Journal of applied sciences (Asian Network for Scientific Information) |
container_volume | 10 |
creator | Bentaouza, C M Benyettou, M |
description | This research is a study applied to the supervised classification of brain tumours by a method resulting from the artificial intelligence which is the Support Vector Machines. The artificial intelligence quickly moved these last decades, with the evolution of the cerebral imagery to diagnose certain diseases such as the brain tumours by techniques like magnetic resonance imagery in order to treat this disease by the surgery and microscopy to detect the type and the rank of the tumour. The results obtained by the Support Vector Machines are satisfactory from the point of view of time of learning and convergence, which have in particular tendency to learn data too much, thus providing good performances in generalization. On the other hand the Support Vector Machines give automatically a reliable result. |
doi_str_mv | 10.3923/jas.2010.1755.1761 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864417818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762118590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-e1462900227a6faf97afbdf67710255f75f16b17efc3f52a2da6a2dded8fdfe33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhj2ARPn4A0zZYEnx2bGdLEhQ8SUVMVBYLdfxCVdpHOxk4N_jqMws7-mVnjudHkIugS55w_jNzqQlo7mBEiKHhCOygBpYKaSoTshpSjtKKy4btSC379MwhDgWn86OIRavxn753qUCc7mPxvfFZtqHKaZi5bouZ2dS8uitGX3oz8kxmi65i795Rj4eHzar53L99vSyuluXljE1lg4qyRpKczESDTbK4LZFqRRQJgQqgSC3oBxajoIZ1hqZo3VtjS06zs_I1eHuEMP35NKo9z7Z_JDpXZiSrmVVgaqhzuT1v2T2wQBq0dCMsgNqY0gpOtRD9HsTfzRQPavUWaWeVepZ5bwK_BfkeWnZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762118590</pqid></control><display><type>article</type><title>Support Vector Machines for Brain Tumours Cells Classification</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Science Alert</source><creator>Bentaouza, C M ; Benyettou, M</creator><creatorcontrib>Bentaouza, C M ; Benyettou, M</creatorcontrib><description>This research is a study applied to the supervised classification of brain tumours by a method resulting from the artificial intelligence which is the Support Vector Machines. The artificial intelligence quickly moved these last decades, with the evolution of the cerebral imagery to diagnose certain diseases such as the brain tumours by techniques like magnetic resonance imagery in order to treat this disease by the surgery and microscopy to detect the type and the rank of the tumour. The results obtained by the Support Vector Machines are satisfactory from the point of view of time of learning and convergence, which have in particular tendency to learn data too much, thus providing good performances in generalization. On the other hand the Support Vector Machines give automatically a reliable result.</description><identifier>ISSN: 1812-5654</identifier><identifier>DOI: 10.3923/jas.2010.1755.1761</identifier><language>eng</language><subject>Artificial intelligence ; Brain ; Classification ; Diseases ; Expert systems ; Imagery ; Support vector machines ; Tumours</subject><ispartof>Journal of applied sciences (Asian Network for Scientific Information), 2010-08, Vol.10 (16), p.1755-1761</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-e1462900227a6faf97afbdf67710255f75f16b17efc3f52a2da6a2dded8fdfe33</citedby><cites>FETCH-LOGICAL-c227t-e1462900227a6faf97afbdf67710255f75f16b17efc3f52a2da6a2dded8fdfe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4110,27901,27902</link.rule.ids></links><search><creatorcontrib>Bentaouza, C M</creatorcontrib><creatorcontrib>Benyettou, M</creatorcontrib><title>Support Vector Machines for Brain Tumours Cells Classification</title><title>Journal of applied sciences (Asian Network for Scientific Information)</title><description>This research is a study applied to the supervised classification of brain tumours by a method resulting from the artificial intelligence which is the Support Vector Machines. The artificial intelligence quickly moved these last decades, with the evolution of the cerebral imagery to diagnose certain diseases such as the brain tumours by techniques like magnetic resonance imagery in order to treat this disease by the surgery and microscopy to detect the type and the rank of the tumour. The results obtained by the Support Vector Machines are satisfactory from the point of view of time of learning and convergence, which have in particular tendency to learn data too much, thus providing good performances in generalization. On the other hand the Support Vector Machines give automatically a reliable result.</description><subject>Artificial intelligence</subject><subject>Brain</subject><subject>Classification</subject><subject>Diseases</subject><subject>Expert systems</subject><subject>Imagery</subject><subject>Support vector machines</subject><subject>Tumours</subject><issn>1812-5654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhj2ARPn4A0zZYEnx2bGdLEhQ8SUVMVBYLdfxCVdpHOxk4N_jqMws7-mVnjudHkIugS55w_jNzqQlo7mBEiKHhCOygBpYKaSoTshpSjtKKy4btSC379MwhDgWn86OIRavxn753qUCc7mPxvfFZtqHKaZi5bouZ2dS8uitGX3oz8kxmi65i795Rj4eHzar53L99vSyuluXljE1lg4qyRpKczESDTbK4LZFqRRQJgQqgSC3oBxajoIZ1hqZo3VtjS06zs_I1eHuEMP35NKo9z7Z_JDpXZiSrmVVgaqhzuT1v2T2wQBq0dCMsgNqY0gpOtRD9HsTfzRQPavUWaWeVepZ5bwK_BfkeWnZ</recordid><startdate>20100815</startdate><enddate>20100815</enddate><creator>Bentaouza, C M</creator><creator>Benyettou, M</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TK</scope></search><sort><creationdate>20100815</creationdate><title>Support Vector Machines for Brain Tumours Cells Classification</title><author>Bentaouza, C M ; Benyettou, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-e1462900227a6faf97afbdf67710255f75f16b17efc3f52a2da6a2dded8fdfe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial intelligence</topic><topic>Brain</topic><topic>Classification</topic><topic>Diseases</topic><topic>Expert systems</topic><topic>Imagery</topic><topic>Support vector machines</topic><topic>Tumours</topic><toplevel>online_resources</toplevel><creatorcontrib>Bentaouza, C M</creatorcontrib><creatorcontrib>Benyettou, M</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bentaouza, C M</au><au>Benyettou, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Support Vector Machines for Brain Tumours Cells Classification</atitle><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle><date>2010-08-15</date><risdate>2010</risdate><volume>10</volume><issue>16</issue><spage>1755</spage><epage>1761</epage><pages>1755-1761</pages><issn>1812-5654</issn><abstract>This research is a study applied to the supervised classification of brain tumours by a method resulting from the artificial intelligence which is the Support Vector Machines. The artificial intelligence quickly moved these last decades, with the evolution of the cerebral imagery to diagnose certain diseases such as the brain tumours by techniques like magnetic resonance imagery in order to treat this disease by the surgery and microscopy to detect the type and the rank of the tumour. The results obtained by the Support Vector Machines are satisfactory from the point of view of time of learning and convergence, which have in particular tendency to learn data too much, thus providing good performances in generalization. On the other hand the Support Vector Machines give automatically a reliable result.</abstract><doi>10.3923/jas.2010.1755.1761</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1812-5654 |
ispartof | Journal of applied sciences (Asian Network for Scientific Information), 2010-08, Vol.10 (16), p.1755-1761 |
issn | 1812-5654 |
language | eng |
recordid | cdi_proquest_miscellaneous_864417818 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Science Alert |
subjects | Artificial intelligence Brain Classification Diseases Expert systems Imagery Support vector machines Tumours |
title | Support Vector Machines for Brain Tumours Cells Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Support%20Vector%20Machines%20for%20Brain%20Tumours%20Cells%20Classification&rft.jtitle=Journal%20of%20applied%20sciences%20(Asian%20Network%20for%20Scientific%20Information)&rft.au=Bentaouza,%20C%20M&rft.date=2010-08-15&rft.volume=10&rft.issue=16&rft.spage=1755&rft.epage=1761&rft.pages=1755-1761&rft.issn=1812-5654&rft_id=info:doi/10.3923/jas.2010.1755.1761&rft_dat=%3Cproquest_cross%3E1762118590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762118590&rft_id=info:pmid/&rfr_iscdi=true |