Radiative E1 decays of X(3872)
Radiative E1 decay widths of X(3872) are calculated through the relativistic Salpeter method, with the assumption that X(3872) is the χc1(2P) state, which is the radial excited state of χc1(1P). We first calculated the E1 decay width of χc1(1P). The result is in agreement with experimental data exce...
Gespeichert in:
Veröffentlicht in: | Physics letters. B 2011-03, Vol.697 (3), p.233-237 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 3 |
container_start_page | 233 |
container_title | Physics letters. B |
container_volume | 697 |
creator | Wang, Tian-Hong Wang, Guo-Li |
description | Radiative E1 decay widths of X(3872) are calculated through the relativistic Salpeter method, with the assumption that X(3872) is the χc1(2P) state, which is the radial excited state of χc1(1P). We first calculated the E1 decay width of χc1(1P). The result is in agreement with experimental data excellently. Then we calculated the width of X(3872) with the assignment χc1(2P). Results are: Γ(X(3872)→γJ/ψ)=33.0 keV, Γ(X(3872)→γψ(2S))=146 keV and Γ(X(3872)→γψ(3770))=7.09 keV. The ratio Br(X(3872)→γψ(2S))/Br(X(3872)→γJ/ψ)=4.4 agrees with experimental data by BaBar, but is larger than the new up-bound reported by Belle recently. With the same method, we also predicted the decay widths, Γ(χb1(1P))→γϒ(1S)=30.0 keV, Γ(χb1(2P))→γϒ(1S)=5.65 keV and Γ(χb1(2P))→γϒ(2S)=15.8 keV, from which we get the full widths: Γ(χb1(1P))∼85.7 keV and Γ(χb1(2P))∼66.5 keV. |
doi_str_mv | 10.1016/j.physletb.2011.02.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864417784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0370269311001468</els_id><sourcerecordid>864417784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-e0a38e69ee3a634cf6ef63671d2b3839b1beea592b4b4bac65d113ba8fbe70ff3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_oexF1MOuk49Nsjel1A8oCKLgLWSzE0zZdmuyLfTfu6XqVeYwl-edl3kImVAoKFB5uyjWn7vUYl8XDCgtgBVAxREZUa14zoQoj8kIuIKcyYqfkrOUFgBAS5AjMnm1TbB92GI2o1mDzu5S1vns45prxW7OyYm3bcKLnz0m7w-zt-lTPn95fJ7ez3PHlehzBMs1ygqRW8mF8xK95FLRhtVc86qmNaItK1aLYayTZUMpr632NSrwno_J1eHuOnZfG0y9WYbksG3tCrtNMloKQZXSYiDlgXSxSymiN-sYljbuDAWz92EW5teH2fswwMzgYwhe_lTY5Gzro125kP7SjOtK6bIcuLsDh8O_24DRJBdw5bAJEV1vmi78V_UNMjl3Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864417784</pqid></control><display><type>article</type><title>Radiative E1 decays of X(3872)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Tian-Hong ; Wang, Guo-Li</creator><creatorcontrib>Wang, Tian-Hong ; Wang, Guo-Li</creatorcontrib><description>Radiative E1 decay widths of X(3872) are calculated through the relativistic Salpeter method, with the assumption that X(3872) is the χc1(2P) state, which is the radial excited state of χc1(1P). We first calculated the E1 decay width of χc1(1P). The result is in agreement with experimental data excellently. Then we calculated the width of X(3872) with the assignment χc1(2P). Results are: Γ(X(3872)→γJ/ψ)=33.0 keV, Γ(X(3872)→γψ(2S))=146 keV and Γ(X(3872)→γψ(3770))=7.09 keV. The ratio Br(X(3872)→γψ(2S))/Br(X(3872)→γJ/ψ)=4.4 agrees with experimental data by BaBar, but is larger than the new up-bound reported by Belle recently. With the same method, we also predicted the decay widths, Γ(χb1(1P))→γϒ(1S)=30.0 keV, Γ(χb1(2P))→γϒ(1S)=5.65 keV and Γ(χb1(2P))→γϒ(2S)=15.8 keV, from which we get the full widths: Γ(χb1(1P))∼85.7 keV and Γ(χb1(2P))∼66.5 keV.</description><identifier>ISSN: 0370-2693</identifier><identifier>EISSN: 1873-2445</identifier><identifier>DOI: 10.1016/j.physletb.2011.02.014</identifier><identifier>CODEN: PYLBAJ</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Decay ; Elementary particles ; Exact sciences and technology ; Excitation ; Mathematical analysis ; Nuclear physics ; Physics ; Radial excited state ; Radiative decay ; The physics of elementary particles and fields</subject><ispartof>Physics letters. B, 2011-03, Vol.697 (3), p.233-237</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-e0a38e69ee3a634cf6ef63671d2b3839b1beea592b4b4bac65d113ba8fbe70ff3</citedby><cites>FETCH-LOGICAL-c374t-e0a38e69ee3a634cf6ef63671d2b3839b1beea592b4b4bac65d113ba8fbe70ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0370269311001468$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23897855$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tian-Hong</creatorcontrib><creatorcontrib>Wang, Guo-Li</creatorcontrib><title>Radiative E1 decays of X(3872)</title><title>Physics letters. B</title><description>Radiative E1 decay widths of X(3872) are calculated through the relativistic Salpeter method, with the assumption that X(3872) is the χc1(2P) state, which is the radial excited state of χc1(1P). We first calculated the E1 decay width of χc1(1P). The result is in agreement with experimental data excellently. Then we calculated the width of X(3872) with the assignment χc1(2P). Results are: Γ(X(3872)→γJ/ψ)=33.0 keV, Γ(X(3872)→γψ(2S))=146 keV and Γ(X(3872)→γψ(3770))=7.09 keV. The ratio Br(X(3872)→γψ(2S))/Br(X(3872)→γJ/ψ)=4.4 agrees with experimental data by BaBar, but is larger than the new up-bound reported by Belle recently. With the same method, we also predicted the decay widths, Γ(χb1(1P))→γϒ(1S)=30.0 keV, Γ(χb1(2P))→γϒ(1S)=5.65 keV and Γ(χb1(2P))→γϒ(2S)=15.8 keV, from which we get the full widths: Γ(χb1(1P))∼85.7 keV and Γ(χb1(2P))∼66.5 keV.</description><subject>Decay</subject><subject>Elementary particles</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>Mathematical analysis</subject><subject>Nuclear physics</subject><subject>Physics</subject><subject>Radial excited state</subject><subject>Radiative decay</subject><subject>The physics of elementary particles and fields</subject><issn>0370-2693</issn><issn>1873-2445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_oexF1MOuk49Nsjel1A8oCKLgLWSzE0zZdmuyLfTfu6XqVeYwl-edl3kImVAoKFB5uyjWn7vUYl8XDCgtgBVAxREZUa14zoQoj8kIuIKcyYqfkrOUFgBAS5AjMnm1TbB92GI2o1mDzu5S1vns45prxW7OyYm3bcKLnz0m7w-zt-lTPn95fJ7ez3PHlehzBMs1ygqRW8mF8xK95FLRhtVc86qmNaItK1aLYayTZUMpr632NSrwno_J1eHuOnZfG0y9WYbksG3tCrtNMloKQZXSYiDlgXSxSymiN-sYljbuDAWz92EW5teH2fswwMzgYwhe_lTY5Gzro125kP7SjOtK6bIcuLsDh8O_24DRJBdw5bAJEV1vmi78V_UNMjl3Pw</recordid><startdate>20110307</startdate><enddate>20110307</enddate><creator>Wang, Tian-Hong</creator><creator>Wang, Guo-Li</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110307</creationdate><title>Radiative E1 decays of X(3872)</title><author>Wang, Tian-Hong ; Wang, Guo-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-e0a38e69ee3a634cf6ef63671d2b3839b1beea592b4b4bac65d113ba8fbe70ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Decay</topic><topic>Elementary particles</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>Mathematical analysis</topic><topic>Nuclear physics</topic><topic>Physics</topic><topic>Radial excited state</topic><topic>Radiative decay</topic><topic>The physics of elementary particles and fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tian-Hong</creatorcontrib><creatorcontrib>Wang, Guo-Li</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tian-Hong</au><au>Wang, Guo-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative E1 decays of X(3872)</atitle><jtitle>Physics letters. B</jtitle><date>2011-03-07</date><risdate>2011</risdate><volume>697</volume><issue>3</issue><spage>233</spage><epage>237</epage><pages>233-237</pages><issn>0370-2693</issn><eissn>1873-2445</eissn><coden>PYLBAJ</coden><abstract>Radiative E1 decay widths of X(3872) are calculated through the relativistic Salpeter method, with the assumption that X(3872) is the χc1(2P) state, which is the radial excited state of χc1(1P). We first calculated the E1 decay width of χc1(1P). The result is in agreement with experimental data excellently. Then we calculated the width of X(3872) with the assignment χc1(2P). Results are: Γ(X(3872)→γJ/ψ)=33.0 keV, Γ(X(3872)→γψ(2S))=146 keV and Γ(X(3872)→γψ(3770))=7.09 keV. The ratio Br(X(3872)→γψ(2S))/Br(X(3872)→γJ/ψ)=4.4 agrees with experimental data by BaBar, but is larger than the new up-bound reported by Belle recently. With the same method, we also predicted the decay widths, Γ(χb1(1P))→γϒ(1S)=30.0 keV, Γ(χb1(2P))→γϒ(1S)=5.65 keV and Γ(χb1(2P))→γϒ(2S)=15.8 keV, from which we get the full widths: Γ(χb1(1P))∼85.7 keV and Γ(χb1(2P))∼66.5 keV.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physletb.2011.02.014</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-2693 |
ispartof | Physics letters. B, 2011-03, Vol.697 (3), p.233-237 |
issn | 0370-2693 1873-2445 |
language | eng |
recordid | cdi_proquest_miscellaneous_864417784 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Decay Elementary particles Exact sciences and technology Excitation Mathematical analysis Nuclear physics Physics Radial excited state Radiative decay The physics of elementary particles and fields |
title | Radiative E1 decays of X(3872) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20E1%20decays%20of%20X(3872)&rft.jtitle=Physics%20letters.%20B&rft.au=Wang,%20Tian-Hong&rft.date=2011-03-07&rft.volume=697&rft.issue=3&rft.spage=233&rft.epage=237&rft.pages=233-237&rft.issn=0370-2693&rft.eissn=1873-2445&rft.coden=PYLBAJ&rft_id=info:doi/10.1016/j.physletb.2011.02.014&rft_dat=%3Cproquest_cross%3E864417784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864417784&rft_id=info:pmid/&rft_els_id=S0370269311001468&rfr_iscdi=true |