Radiative E1 decays of X(3872)

Radiative E1 decay widths of X(3872) are calculated through the relativistic Salpeter method, with the assumption that X(3872) is the χc1(2P) state, which is the radial excited state of χc1(1P). We first calculated the E1 decay width of χc1(1P). The result is in agreement with experimental data exce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. B 2011-03, Vol.697 (3), p.233-237
Hauptverfasser: Wang, Tian-Hong, Wang, Guo-Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 3
container_start_page 233
container_title Physics letters. B
container_volume 697
creator Wang, Tian-Hong
Wang, Guo-Li
description Radiative E1 decay widths of X(3872) are calculated through the relativistic Salpeter method, with the assumption that X(3872) is the χc1(2P) state, which is the radial excited state of χc1(1P). We first calculated the E1 decay width of χc1(1P). The result is in agreement with experimental data excellently. Then we calculated the width of X(3872) with the assignment χc1(2P). Results are: Γ(X(3872)→γJ/ψ)=33.0 keV, Γ(X(3872)→γψ(2S))=146 keV and Γ(X(3872)→γψ(3770))=7.09 keV. The ratio Br(X(3872)→γψ(2S))/Br(X(3872)→γJ/ψ)=4.4 agrees with experimental data by BaBar, but is larger than the new up-bound reported by Belle recently. With the same method, we also predicted the decay widths, Γ(χb1(1P))→γϒ(1S)=30.0 keV, Γ(χb1(2P))→γϒ(1S)=5.65 keV and Γ(χb1(2P))→γϒ(2S)=15.8 keV, from which we get the full widths: Γ(χb1(1P))∼85.7 keV and Γ(χb1(2P))∼66.5 keV.
doi_str_mv 10.1016/j.physletb.2011.02.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864417784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0370269311001468</els_id><sourcerecordid>864417784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-e0a38e69ee3a634cf6ef63671d2b3839b1beea592b4b4bac65d113ba8fbe70ff3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_oexF1MOuk49Nsjel1A8oCKLgLWSzE0zZdmuyLfTfu6XqVeYwl-edl3kImVAoKFB5uyjWn7vUYl8XDCgtgBVAxREZUa14zoQoj8kIuIKcyYqfkrOUFgBAS5AjMnm1TbB92GI2o1mDzu5S1vns45prxW7OyYm3bcKLnz0m7w-zt-lTPn95fJ7ez3PHlehzBMs1ygqRW8mF8xK95FLRhtVc86qmNaItK1aLYayTZUMpr632NSrwno_J1eHuOnZfG0y9WYbksG3tCrtNMloKQZXSYiDlgXSxSymiN-sYljbuDAWz92EW5teH2fswwMzgYwhe_lTY5Gzro125kP7SjOtK6bIcuLsDh8O_24DRJBdw5bAJEV1vmi78V_UNMjl3Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864417784</pqid></control><display><type>article</type><title>Radiative E1 decays of X(3872)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Tian-Hong ; Wang, Guo-Li</creator><creatorcontrib>Wang, Tian-Hong ; Wang, Guo-Li</creatorcontrib><description>Radiative E1 decay widths of X(3872) are calculated through the relativistic Salpeter method, with the assumption that X(3872) is the χc1(2P) state, which is the radial excited state of χc1(1P). We first calculated the E1 decay width of χc1(1P). The result is in agreement with experimental data excellently. Then we calculated the width of X(3872) with the assignment χc1(2P). Results are: Γ(X(3872)→γJ/ψ)=33.0 keV, Γ(X(3872)→γψ(2S))=146 keV and Γ(X(3872)→γψ(3770))=7.09 keV. The ratio Br(X(3872)→γψ(2S))/Br(X(3872)→γJ/ψ)=4.4 agrees with experimental data by BaBar, but is larger than the new up-bound reported by Belle recently. With the same method, we also predicted the decay widths, Γ(χb1(1P))→γϒ(1S)=30.0 keV, Γ(χb1(2P))→γϒ(1S)=5.65 keV and Γ(χb1(2P))→γϒ(2S)=15.8 keV, from which we get the full widths: Γ(χb1(1P))∼85.7 keV and Γ(χb1(2P))∼66.5 keV.</description><identifier>ISSN: 0370-2693</identifier><identifier>EISSN: 1873-2445</identifier><identifier>DOI: 10.1016/j.physletb.2011.02.014</identifier><identifier>CODEN: PYLBAJ</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Decay ; Elementary particles ; Exact sciences and technology ; Excitation ; Mathematical analysis ; Nuclear physics ; Physics ; Radial excited state ; Radiative decay ; The physics of elementary particles and fields</subject><ispartof>Physics letters. B, 2011-03, Vol.697 (3), p.233-237</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-e0a38e69ee3a634cf6ef63671d2b3839b1beea592b4b4bac65d113ba8fbe70ff3</citedby><cites>FETCH-LOGICAL-c374t-e0a38e69ee3a634cf6ef63671d2b3839b1beea592b4b4bac65d113ba8fbe70ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0370269311001468$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23897855$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tian-Hong</creatorcontrib><creatorcontrib>Wang, Guo-Li</creatorcontrib><title>Radiative E1 decays of X(3872)</title><title>Physics letters. B</title><description>Radiative E1 decay widths of X(3872) are calculated through the relativistic Salpeter method, with the assumption that X(3872) is the χc1(2P) state, which is the radial excited state of χc1(1P). We first calculated the E1 decay width of χc1(1P). The result is in agreement with experimental data excellently. Then we calculated the width of X(3872) with the assignment χc1(2P). Results are: Γ(X(3872)→γJ/ψ)=33.0 keV, Γ(X(3872)→γψ(2S))=146 keV and Γ(X(3872)→γψ(3770))=7.09 keV. The ratio Br(X(3872)→γψ(2S))/Br(X(3872)→γJ/ψ)=4.4 agrees with experimental data by BaBar, but is larger than the new up-bound reported by Belle recently. With the same method, we also predicted the decay widths, Γ(χb1(1P))→γϒ(1S)=30.0 keV, Γ(χb1(2P))→γϒ(1S)=5.65 keV and Γ(χb1(2P))→γϒ(2S)=15.8 keV, from which we get the full widths: Γ(χb1(1P))∼85.7 keV and Γ(χb1(2P))∼66.5 keV.</description><subject>Decay</subject><subject>Elementary particles</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>Mathematical analysis</subject><subject>Nuclear physics</subject><subject>Physics</subject><subject>Radial excited state</subject><subject>Radiative decay</subject><subject>The physics of elementary particles and fields</subject><issn>0370-2693</issn><issn>1873-2445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_oexF1MOuk49Nsjel1A8oCKLgLWSzE0zZdmuyLfTfu6XqVeYwl-edl3kImVAoKFB5uyjWn7vUYl8XDCgtgBVAxREZUa14zoQoj8kIuIKcyYqfkrOUFgBAS5AjMnm1TbB92GI2o1mDzu5S1vns45prxW7OyYm3bcKLnz0m7w-zt-lTPn95fJ7ez3PHlehzBMs1ygqRW8mF8xK95FLRhtVc86qmNaItK1aLYayTZUMpr632NSrwno_J1eHuOnZfG0y9WYbksG3tCrtNMloKQZXSYiDlgXSxSymiN-sYljbuDAWz92EW5teH2fswwMzgYwhe_lTY5Gzro125kP7SjOtK6bIcuLsDh8O_24DRJBdw5bAJEV1vmi78V_UNMjl3Pw</recordid><startdate>20110307</startdate><enddate>20110307</enddate><creator>Wang, Tian-Hong</creator><creator>Wang, Guo-Li</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110307</creationdate><title>Radiative E1 decays of X(3872)</title><author>Wang, Tian-Hong ; Wang, Guo-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-e0a38e69ee3a634cf6ef63671d2b3839b1beea592b4b4bac65d113ba8fbe70ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Decay</topic><topic>Elementary particles</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>Mathematical analysis</topic><topic>Nuclear physics</topic><topic>Physics</topic><topic>Radial excited state</topic><topic>Radiative decay</topic><topic>The physics of elementary particles and fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tian-Hong</creatorcontrib><creatorcontrib>Wang, Guo-Li</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tian-Hong</au><au>Wang, Guo-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative E1 decays of X(3872)</atitle><jtitle>Physics letters. B</jtitle><date>2011-03-07</date><risdate>2011</risdate><volume>697</volume><issue>3</issue><spage>233</spage><epage>237</epage><pages>233-237</pages><issn>0370-2693</issn><eissn>1873-2445</eissn><coden>PYLBAJ</coden><abstract>Radiative E1 decay widths of X(3872) are calculated through the relativistic Salpeter method, with the assumption that X(3872) is the χc1(2P) state, which is the radial excited state of χc1(1P). We first calculated the E1 decay width of χc1(1P). The result is in agreement with experimental data excellently. Then we calculated the width of X(3872) with the assignment χc1(2P). Results are: Γ(X(3872)→γJ/ψ)=33.0 keV, Γ(X(3872)→γψ(2S))=146 keV and Γ(X(3872)→γψ(3770))=7.09 keV. The ratio Br(X(3872)→γψ(2S))/Br(X(3872)→γJ/ψ)=4.4 agrees with experimental data by BaBar, but is larger than the new up-bound reported by Belle recently. With the same method, we also predicted the decay widths, Γ(χb1(1P))→γϒ(1S)=30.0 keV, Γ(χb1(2P))→γϒ(1S)=5.65 keV and Γ(χb1(2P))→γϒ(2S)=15.8 keV, from which we get the full widths: Γ(χb1(1P))∼85.7 keV and Γ(χb1(2P))∼66.5 keV.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physletb.2011.02.014</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0370-2693
ispartof Physics letters. B, 2011-03, Vol.697 (3), p.233-237
issn 0370-2693
1873-2445
language eng
recordid cdi_proquest_miscellaneous_864417784
source Elsevier ScienceDirect Journals Complete
subjects Decay
Elementary particles
Exact sciences and technology
Excitation
Mathematical analysis
Nuclear physics
Physics
Radial excited state
Radiative decay
The physics of elementary particles and fields
title Radiative E1 decays of X(3872)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20E1%20decays%20of%20X(3872)&rft.jtitle=Physics%20letters.%20B&rft.au=Wang,%20Tian-Hong&rft.date=2011-03-07&rft.volume=697&rft.issue=3&rft.spage=233&rft.epage=237&rft.pages=233-237&rft.issn=0370-2693&rft.eissn=1873-2445&rft.coden=PYLBAJ&rft_id=info:doi/10.1016/j.physletb.2011.02.014&rft_dat=%3Cproquest_cross%3E864417784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864417784&rft_id=info:pmid/&rft_els_id=S0370269311001468&rfr_iscdi=true