The multi-terminal maximum-flow network-interdiction problem

This paper defines and studies the multi-terminal maximum-flow network-interdiction problem (MTNIP) in which a network user attempts to maximize flow in a network among K ⩾ 3 pre-specified node groups while an interdictor uses limited resources to interdict network arcs to minimize this maximum flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2011-06, Vol.211 (2), p.241-251
Hauptverfasser: Akgün, İbrahim, Tansel, Barbaros Ç., Kevin Wood, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 2
container_start_page 241
container_title European journal of operational research
container_volume 211
creator Akgün, İbrahim
Tansel, Barbaros Ç.
Kevin Wood, R.
description This paper defines and studies the multi-terminal maximum-flow network-interdiction problem (MTNIP) in which a network user attempts to maximize flow in a network among K ⩾ 3 pre-specified node groups while an interdictor uses limited resources to interdict network arcs to minimize this maximum flow. The paper proposes an exact (MTNIP-E) and an approximating model (MPNIM) to solve this NP-hard problem and presents computational results to compare the models. MTNIP-E is obtained by first formulating MTNIP as bi-level min–max program and then converting it into a mixed integer program where the flow is explicitly minimized. MPNIM is binary-integer program that does not minimize the flow directly. It partitions the node set into disjoint subsets such that each node group is in a different subset and minimizes the sum of the arc capacities crossing between different subsets. Computational results show that MPNIM can solve all instances in a few seconds while MTNIP-E cannot solve about one third of the problems in 24 hour. The optimal objective function values of both models are equal to each other for some problems while they differ from each other as much as 46.2% in the worst case. However, when the post-interdiction flow capacity incurred by the solution of MPNIM is computed and compared to the objective value of MTNIP-E, the largest difference is only 7.90% implying that MPNIM may be a very good approximation to MTNIP-E.
doi_str_mv 10.1016/j.ejor.2010.12.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864414361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221710008775</els_id><sourcerecordid>2270514331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-78e3b1e690f914f966c6448c0e4bd8079953462fb1fa1351a0c186326345ffd73</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EEkvLH-C0QkKcsnj8HakXVNEWUamXcra8zlh1iJPFTlr673G6VQ8csGTPyH7mnfFLyAegO6CgvvQ77Ke8Y3S9YDsK8IpswGjWKKPoa7KhXOuGMdBvybtSekopSJAbcnZ7h9u0DHNsZswpjm7YJvcnpiU1YZgetiPOD1P-1cSxvnfRz3Eat4c87QdMp-RNcEPB98_xhPy8-HZ7ftVc31x-P_963XjZmrnRBvkeULU0tCBCq5RXQhhPUew7Q3XbSi4UC3sIDrgERz0YxZniQobQaX5CPh91a9_fC5bZplg8DoMbcVqKNVUOBFdQyY__kP205PqpCkmmpGyZrBA7Qj5PpWQM9pBjcvnRArWrnba3q512tdMCs9XOWvTjWJTxgP6lAuuqKBZ7b7ljAPV8XDP6lMY1rfuwRgGWSbB3c6pqn57ndMW7IWQ3-lheVBk3rRaaV-7syGG19z5itsVHHD12MaOfbTfF_w39FyekouQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>852655925</pqid></control><display><type>article</type><title>The multi-terminal maximum-flow network-interdiction problem</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Akgün, İbrahim ; Tansel, Barbaros Ç. ; Kevin Wood, R.</creator><creatorcontrib>Akgün, İbrahim ; Tansel, Barbaros Ç. ; Kevin Wood, R.</creatorcontrib><description>This paper defines and studies the multi-terminal maximum-flow network-interdiction problem (MTNIP) in which a network user attempts to maximize flow in a network among K ⩾ 3 pre-specified node groups while an interdictor uses limited resources to interdict network arcs to minimize this maximum flow. The paper proposes an exact (MTNIP-E) and an approximating model (MPNIM) to solve this NP-hard problem and presents computational results to compare the models. MTNIP-E is obtained by first formulating MTNIP as bi-level min–max program and then converting it into a mixed integer program where the flow is explicitly minimized. MPNIM is binary-integer program that does not minimize the flow directly. It partitions the node set into disjoint subsets such that each node group is in a different subset and minimizes the sum of the arc capacities crossing between different subsets. Computational results show that MPNIM can solve all instances in a few seconds while MTNIP-E cannot solve about one third of the problems in 24 hour. The optimal objective function values of both models are equal to each other for some problems while they differ from each other as much as 46.2% in the worst case. However, when the post-interdiction flow capacity incurred by the solution of MPNIM is computed and compared to the objective value of MTNIP-E, the largest difference is only 7.90% implying that MPNIM may be a very good approximation to MTNIP-E.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2010.12.011</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Approximation ; Computation ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Integer programming ; Mathematical analysis ; Mathematical models ; Mathematical programming ; Mixed integer ; Network flow problem ; Network flows ; Network interdiction ; Networks ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Optimization algorithms ; OR in military ; OR in military Integer programming Network flows Network interdiction ; Studies</subject><ispartof>European journal of operational research, 2011-06, Vol.211 (2), p.241-251</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jun 1, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-78e3b1e690f914f966c6448c0e4bd8079953462fb1fa1351a0c186326345ffd73</citedby><cites>FETCH-LOGICAL-c598t-78e3b1e690f914f966c6448c0e4bd8079953462fb1fa1351a0c186326345ffd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2010.12.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4006,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23897473$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a211_3ay_3a2011_3ai_3a2_3ap_3a241-251.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Akgün, İbrahim</creatorcontrib><creatorcontrib>Tansel, Barbaros Ç.</creatorcontrib><creatorcontrib>Kevin Wood, R.</creatorcontrib><title>The multi-terminal maximum-flow network-interdiction problem</title><title>European journal of operational research</title><description>This paper defines and studies the multi-terminal maximum-flow network-interdiction problem (MTNIP) in which a network user attempts to maximize flow in a network among K ⩾ 3 pre-specified node groups while an interdictor uses limited resources to interdict network arcs to minimize this maximum flow. The paper proposes an exact (MTNIP-E) and an approximating model (MPNIM) to solve this NP-hard problem and presents computational results to compare the models. MTNIP-E is obtained by first formulating MTNIP as bi-level min–max program and then converting it into a mixed integer program where the flow is explicitly minimized. MPNIM is binary-integer program that does not minimize the flow directly. It partitions the node set into disjoint subsets such that each node group is in a different subset and minimizes the sum of the arc capacities crossing between different subsets. Computational results show that MPNIM can solve all instances in a few seconds while MTNIP-E cannot solve about one third of the problems in 24 hour. The optimal objective function values of both models are equal to each other for some problems while they differ from each other as much as 46.2% in the worst case. However, when the post-interdiction flow capacity incurred by the solution of MPNIM is computed and compared to the objective value of MTNIP-E, the largest difference is only 7.90% implying that MPNIM may be a very good approximation to MTNIP-E.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Computation</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Integer programming</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Mixed integer</subject><subject>Network flow problem</subject><subject>Network flows</subject><subject>Network interdiction</subject><subject>Networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>OR in military</subject><subject>OR in military Integer programming Network flows Network interdiction</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kE1v1DAQhi0EEkvLH-C0QkKcsnj8HakXVNEWUamXcra8zlh1iJPFTlr673G6VQ8csGTPyH7mnfFLyAegO6CgvvQ77Ke8Y3S9YDsK8IpswGjWKKPoa7KhXOuGMdBvybtSekopSJAbcnZ7h9u0DHNsZswpjm7YJvcnpiU1YZgetiPOD1P-1cSxvnfRz3Eat4c87QdMp-RNcEPB98_xhPy8-HZ7ftVc31x-P_963XjZmrnRBvkeULU0tCBCq5RXQhhPUew7Q3XbSi4UC3sIDrgERz0YxZniQobQaX5CPh91a9_fC5bZplg8DoMbcVqKNVUOBFdQyY__kP205PqpCkmmpGyZrBA7Qj5PpWQM9pBjcvnRArWrnba3q512tdMCs9XOWvTjWJTxgP6lAuuqKBZ7b7ljAPV8XDP6lMY1rfuwRgGWSbB3c6pqn57ndMW7IWQ3-lheVBk3rRaaV-7syGG19z5itsVHHD12MaOfbTfF_w39FyekouQ</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Akgün, İbrahim</creator><creator>Tansel, Barbaros Ç.</creator><creator>Kevin Wood, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TA</scope><scope>JG9</scope></search><sort><creationdate>20110601</creationdate><title>The multi-terminal maximum-flow network-interdiction problem</title><author>Akgün, İbrahim ; Tansel, Barbaros Ç. ; Kevin Wood, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-78e3b1e690f914f966c6448c0e4bd8079953462fb1fa1351a0c186326345ffd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Computation</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Integer programming</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Mixed integer</topic><topic>Network flow problem</topic><topic>Network flows</topic><topic>Network interdiction</topic><topic>Networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>OR in military</topic><topic>OR in military Integer programming Network flows Network interdiction</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akgün, İbrahim</creatorcontrib><creatorcontrib>Tansel, Barbaros Ç.</creatorcontrib><creatorcontrib>Kevin Wood, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akgün, İbrahim</au><au>Tansel, Barbaros Ç.</au><au>Kevin Wood, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The multi-terminal maximum-flow network-interdiction problem</atitle><jtitle>European journal of operational research</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>211</volume><issue>2</issue><spage>241</spage><epage>251</epage><pages>241-251</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>This paper defines and studies the multi-terminal maximum-flow network-interdiction problem (MTNIP) in which a network user attempts to maximize flow in a network among K ⩾ 3 pre-specified node groups while an interdictor uses limited resources to interdict network arcs to minimize this maximum flow. The paper proposes an exact (MTNIP-E) and an approximating model (MPNIM) to solve this NP-hard problem and presents computational results to compare the models. MTNIP-E is obtained by first formulating MTNIP as bi-level min–max program and then converting it into a mixed integer program where the flow is explicitly minimized. MPNIM is binary-integer program that does not minimize the flow directly. It partitions the node set into disjoint subsets such that each node group is in a different subset and minimizes the sum of the arc capacities crossing between different subsets. Computational results show that MPNIM can solve all instances in a few seconds while MTNIP-E cannot solve about one third of the problems in 24 hour. The optimal objective function values of both models are equal to each other for some problems while they differ from each other as much as 46.2% in the worst case. However, when the post-interdiction flow capacity incurred by the solution of MPNIM is computed and compared to the objective value of MTNIP-E, the largest difference is only 7.90% implying that MPNIM may be a very good approximation to MTNIP-E.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2010.12.011</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2011-06, Vol.211 (2), p.241-251
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_miscellaneous_864414361
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Approximation
Computation
Exact sciences and technology
Flows in networks. Combinatorial problems
Integer programming
Mathematical analysis
Mathematical models
Mathematical programming
Mixed integer
Network flow problem
Network flows
Network interdiction
Networks
Operational research and scientific management
Operational research. Management science
Optimization
Optimization algorithms
OR in military
OR in military Integer programming Network flows Network interdiction
Studies
title The multi-terminal maximum-flow network-interdiction problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20multi-terminal%20maximum-flow%20network-interdiction%20problem&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Akg%C3%BCn,%20%C4%B0brahim&rft.date=2011-06-01&rft.volume=211&rft.issue=2&rft.spage=241&rft.epage=251&rft.pages=241-251&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2010.12.011&rft_dat=%3Cproquest_cross%3E2270514331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=852655925&rft_id=info:pmid/&rft_els_id=S0377221710008775&rfr_iscdi=true