Sequential covering rule induction algorithm for variable consistency rough set approaches
We present a general rule induction algorithm based on sequential covering, suitable for variable consistency rough set approaches. This algorithm, called VC-DomLEM, can be used for both ordered and non-ordered data. In the case of ordered data, the rough set model employs dominance relation, and in...
Gespeichert in:
Veröffentlicht in: | Information sciences 2011-03, Vol.181 (5), p.987-1002 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1002 |
---|---|
container_issue | 5 |
container_start_page | 987 |
container_title | Information sciences |
container_volume | 181 |
creator | Blaszczynski, Jerzy Slowinski, Roman SzelAe?g, Marcin |
description | We present a general rule induction algorithm based on sequential covering, suitable for variable consistency rough set approaches. This algorithm, called VC-DomLEM, can be used for both ordered and non-ordered data. In the case of ordered data, the rough set model employs dominance relation, and in the case of non-ordered data, it employs indiscernibility relation. VC-DomLEM generates a minimal set of decision rules. These rules are characterized by a satisfactory value of the chosen consistency measure. We analyze properties of induced decision rules, and discuss conditions of correct rule induction. Moreover, we show how to improve rule induction efficiency due to application of consistency measures with desirable monotonicity properties. |
doi_str_mv | 10.1016/j.ins.2010.10.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864413409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025510005359</els_id><sourcerecordid>864413409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-98d2494c262cabf9b8a11ccc1d4ef25f8147e99e0c3e23e5b4d59f9d47d951593</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwAdi8MSXYjp3GYkIV_6RKDMDCYjnOpXWV2sV2KvHtcSgz0-md3rvT-yF0TUlJCa1vt6V1sWTkV5ekIidoRpsFK2om6SmaEcJIQZgQ5-gixi0hhC_qeoY-3-BrBJesHrDxBwjWrXEYB8DWdaNJ1jush7UPNm12uPcBH3Swus0G4120MYEz3zj4cb3BERLW-33w2mwgXqKzXg8Rrv7mHH08Prwvn4vV69PL8n5VmEqKVMimY1xyw2pmdNvLttGUGmNox6Fnom8oX4CUQEwFrALR8k7IXnZ80UlBhazm6OZ4Nz_OXWJSOxsNDIN24MeomppzWnEyOenRaYKPMUCv9sHudPhWlKgJo9qqjFFNGKdVxpgzd8cM5AoHC0FFY3Nn6GwAk1Tn7T_pH3t7fN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864413409</pqid></control><display><type>article</type><title>Sequential covering rule induction algorithm for variable consistency rough set approaches</title><source>Access via ScienceDirect (Elsevier)</source><creator>Blaszczynski, Jerzy ; Slowinski, Roman ; SzelAe?g, Marcin</creator><creatorcontrib>Blaszczynski, Jerzy ; Slowinski, Roman ; SzelAe?g, Marcin</creatorcontrib><description>We present a general rule induction algorithm based on sequential covering, suitable for variable consistency rough set approaches. This algorithm, called VC-DomLEM, can be used for both ordered and non-ordered data. In the case of ordered data, the rough set model employs dominance relation, and in the case of non-ordered data, it employs indiscernibility relation. VC-DomLEM generates a minimal set of decision rules. These rules are characterized by a satisfactory value of the chosen consistency measure. We analyze properties of induced decision rules, and discuss conditions of correct rule induction. Moreover, we show how to improve rule induction efficiency due to application of consistency measures with desirable monotonicity properties.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2010.10.030</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Consistency ; Covering ; Decision analysis ; Decision rule ; Dominance ; Dominance-based rough set approach ; Monotonicity ; Rough set ; Rough set models ; Rule induction ; Sequential covering ; Variable consistency</subject><ispartof>Information sciences, 2011-03, Vol.181 (5), p.987-1002</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-98d2494c262cabf9b8a11ccc1d4ef25f8147e99e0c3e23e5b4d59f9d47d951593</citedby><cites>FETCH-LOGICAL-c395t-98d2494c262cabf9b8a11ccc1d4ef25f8147e99e0c3e23e5b4d59f9d47d951593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2010.10.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Blaszczynski, Jerzy</creatorcontrib><creatorcontrib>Slowinski, Roman</creatorcontrib><creatorcontrib>SzelAe?g, Marcin</creatorcontrib><title>Sequential covering rule induction algorithm for variable consistency rough set approaches</title><title>Information sciences</title><description>We present a general rule induction algorithm based on sequential covering, suitable for variable consistency rough set approaches. This algorithm, called VC-DomLEM, can be used for both ordered and non-ordered data. In the case of ordered data, the rough set model employs dominance relation, and in the case of non-ordered data, it employs indiscernibility relation. VC-DomLEM generates a minimal set of decision rules. These rules are characterized by a satisfactory value of the chosen consistency measure. We analyze properties of induced decision rules, and discuss conditions of correct rule induction. Moreover, we show how to improve rule induction efficiency due to application of consistency measures with desirable monotonicity properties.</description><subject>Algorithms</subject><subject>Consistency</subject><subject>Covering</subject><subject>Decision analysis</subject><subject>Decision rule</subject><subject>Dominance</subject><subject>Dominance-based rough set approach</subject><subject>Monotonicity</subject><subject>Rough set</subject><subject>Rough set models</subject><subject>Rule induction</subject><subject>Sequential covering</subject><subject>Variable consistency</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwAdi8MSXYjp3GYkIV_6RKDMDCYjnOpXWV2sV2KvHtcSgz0-md3rvT-yF0TUlJCa1vt6V1sWTkV5ekIidoRpsFK2om6SmaEcJIQZgQ5-gixi0hhC_qeoY-3-BrBJesHrDxBwjWrXEYB8DWdaNJ1jush7UPNm12uPcBH3Swus0G4120MYEz3zj4cb3BERLW-33w2mwgXqKzXg8Rrv7mHH08Prwvn4vV69PL8n5VmEqKVMimY1xyw2pmdNvLttGUGmNox6Fnom8oX4CUQEwFrALR8k7IXnZ80UlBhazm6OZ4Nz_OXWJSOxsNDIN24MeomppzWnEyOenRaYKPMUCv9sHudPhWlKgJo9qqjFFNGKdVxpgzd8cM5AoHC0FFY3Nn6GwAk1Tn7T_pH3t7fN8</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Blaszczynski, Jerzy</creator><creator>Slowinski, Roman</creator><creator>SzelAe?g, Marcin</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Sequential covering rule induction algorithm for variable consistency rough set approaches</title><author>Blaszczynski, Jerzy ; Slowinski, Roman ; SzelAe?g, Marcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-98d2494c262cabf9b8a11ccc1d4ef25f8147e99e0c3e23e5b4d59f9d47d951593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Consistency</topic><topic>Covering</topic><topic>Decision analysis</topic><topic>Decision rule</topic><topic>Dominance</topic><topic>Dominance-based rough set approach</topic><topic>Monotonicity</topic><topic>Rough set</topic><topic>Rough set models</topic><topic>Rule induction</topic><topic>Sequential covering</topic><topic>Variable consistency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blaszczynski, Jerzy</creatorcontrib><creatorcontrib>Slowinski, Roman</creatorcontrib><creatorcontrib>SzelAe?g, Marcin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blaszczynski, Jerzy</au><au>Slowinski, Roman</au><au>SzelAe?g, Marcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential covering rule induction algorithm for variable consistency rough set approaches</atitle><jtitle>Information sciences</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>181</volume><issue>5</issue><spage>987</spage><epage>1002</epage><pages>987-1002</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>We present a general rule induction algorithm based on sequential covering, suitable for variable consistency rough set approaches. This algorithm, called VC-DomLEM, can be used for both ordered and non-ordered data. In the case of ordered data, the rough set model employs dominance relation, and in the case of non-ordered data, it employs indiscernibility relation. VC-DomLEM generates a minimal set of decision rules. These rules are characterized by a satisfactory value of the chosen consistency measure. We analyze properties of induced decision rules, and discuss conditions of correct rule induction. Moreover, we show how to improve rule induction efficiency due to application of consistency measures with desirable monotonicity properties.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2010.10.030</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2011-03, Vol.181 (5), p.987-1002 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_864413409 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Consistency Covering Decision analysis Decision rule Dominance Dominance-based rough set approach Monotonicity Rough set Rough set models Rule induction Sequential covering Variable consistency |
title | Sequential covering rule induction algorithm for variable consistency rough set approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20covering%20rule%20induction%20algorithm%20for%20variable%20consistency%20rough%20set%20approaches&rft.jtitle=Information%20sciences&rft.au=Blaszczynski,%20Jerzy&rft.date=2011-03-01&rft.volume=181&rft.issue=5&rft.spage=987&rft.epage=1002&rft.pages=987-1002&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2010.10.030&rft_dat=%3Cproquest_cross%3E864413409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864413409&rft_id=info:pmid/&rft_els_id=S0020025510005359&rfr_iscdi=true |