Sequential covering rule induction algorithm for variable consistency rough set approaches

We present a general rule induction algorithm based on sequential covering, suitable for variable consistency rough set approaches. This algorithm, called VC-DomLEM, can be used for both ordered and non-ordered data. In the case of ordered data, the rough set model employs dominance relation, and in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2011-03, Vol.181 (5), p.987-1002
Hauptverfasser: Blaszczynski, Jerzy, Slowinski, Roman, SzelAe?g, Marcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1002
container_issue 5
container_start_page 987
container_title Information sciences
container_volume 181
creator Blaszczynski, Jerzy
Slowinski, Roman
SzelAe?g, Marcin
description We present a general rule induction algorithm based on sequential covering, suitable for variable consistency rough set approaches. This algorithm, called VC-DomLEM, can be used for both ordered and non-ordered data. In the case of ordered data, the rough set model employs dominance relation, and in the case of non-ordered data, it employs indiscernibility relation. VC-DomLEM generates a minimal set of decision rules. These rules are characterized by a satisfactory value of the chosen consistency measure. We analyze properties of induced decision rules, and discuss conditions of correct rule induction. Moreover, we show how to improve rule induction efficiency due to application of consistency measures with desirable monotonicity properties.
doi_str_mv 10.1016/j.ins.2010.10.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864413409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025510005359</els_id><sourcerecordid>864413409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-98d2494c262cabf9b8a11ccc1d4ef25f8147e99e0c3e23e5b4d59f9d47d951593</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwAdi8MSXYjp3GYkIV_6RKDMDCYjnOpXWV2sV2KvHtcSgz0-md3rvT-yF0TUlJCa1vt6V1sWTkV5ekIidoRpsFK2om6SmaEcJIQZgQ5-gixi0hhC_qeoY-3-BrBJesHrDxBwjWrXEYB8DWdaNJ1jush7UPNm12uPcBH3Swus0G4120MYEz3zj4cb3BERLW-33w2mwgXqKzXg8Rrv7mHH08Prwvn4vV69PL8n5VmEqKVMimY1xyw2pmdNvLttGUGmNox6Fnom8oX4CUQEwFrALR8k7IXnZ80UlBhazm6OZ4Nz_OXWJSOxsNDIN24MeomppzWnEyOenRaYKPMUCv9sHudPhWlKgJo9qqjFFNGKdVxpgzd8cM5AoHC0FFY3Nn6GwAk1Tn7T_pH3t7fN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864413409</pqid></control><display><type>article</type><title>Sequential covering rule induction algorithm for variable consistency rough set approaches</title><source>Access via ScienceDirect (Elsevier)</source><creator>Blaszczynski, Jerzy ; Slowinski, Roman ; SzelAe?g, Marcin</creator><creatorcontrib>Blaszczynski, Jerzy ; Slowinski, Roman ; SzelAe?g, Marcin</creatorcontrib><description>We present a general rule induction algorithm based on sequential covering, suitable for variable consistency rough set approaches. This algorithm, called VC-DomLEM, can be used for both ordered and non-ordered data. In the case of ordered data, the rough set model employs dominance relation, and in the case of non-ordered data, it employs indiscernibility relation. VC-DomLEM generates a minimal set of decision rules. These rules are characterized by a satisfactory value of the chosen consistency measure. We analyze properties of induced decision rules, and discuss conditions of correct rule induction. Moreover, we show how to improve rule induction efficiency due to application of consistency measures with desirable monotonicity properties.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2010.10.030</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Consistency ; Covering ; Decision analysis ; Decision rule ; Dominance ; Dominance-based rough set approach ; Monotonicity ; Rough set ; Rough set models ; Rule induction ; Sequential covering ; Variable consistency</subject><ispartof>Information sciences, 2011-03, Vol.181 (5), p.987-1002</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-98d2494c262cabf9b8a11ccc1d4ef25f8147e99e0c3e23e5b4d59f9d47d951593</citedby><cites>FETCH-LOGICAL-c395t-98d2494c262cabf9b8a11ccc1d4ef25f8147e99e0c3e23e5b4d59f9d47d951593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2010.10.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Blaszczynski, Jerzy</creatorcontrib><creatorcontrib>Slowinski, Roman</creatorcontrib><creatorcontrib>SzelAe?g, Marcin</creatorcontrib><title>Sequential covering rule induction algorithm for variable consistency rough set approaches</title><title>Information sciences</title><description>We present a general rule induction algorithm based on sequential covering, suitable for variable consistency rough set approaches. This algorithm, called VC-DomLEM, can be used for both ordered and non-ordered data. In the case of ordered data, the rough set model employs dominance relation, and in the case of non-ordered data, it employs indiscernibility relation. VC-DomLEM generates a minimal set of decision rules. These rules are characterized by a satisfactory value of the chosen consistency measure. We analyze properties of induced decision rules, and discuss conditions of correct rule induction. Moreover, we show how to improve rule induction efficiency due to application of consistency measures with desirable monotonicity properties.</description><subject>Algorithms</subject><subject>Consistency</subject><subject>Covering</subject><subject>Decision analysis</subject><subject>Decision rule</subject><subject>Dominance</subject><subject>Dominance-based rough set approach</subject><subject>Monotonicity</subject><subject>Rough set</subject><subject>Rough set models</subject><subject>Rule induction</subject><subject>Sequential covering</subject><subject>Variable consistency</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwAdi8MSXYjp3GYkIV_6RKDMDCYjnOpXWV2sV2KvHtcSgz0-md3rvT-yF0TUlJCa1vt6V1sWTkV5ekIidoRpsFK2om6SmaEcJIQZgQ5-gixi0hhC_qeoY-3-BrBJesHrDxBwjWrXEYB8DWdaNJ1jush7UPNm12uPcBH3Swus0G4120MYEz3zj4cb3BERLW-33w2mwgXqKzXg8Rrv7mHH08Prwvn4vV69PL8n5VmEqKVMimY1xyw2pmdNvLttGUGmNox6Fnom8oX4CUQEwFrALR8k7IXnZ80UlBhazm6OZ4Nz_OXWJSOxsNDIN24MeomppzWnEyOenRaYKPMUCv9sHudPhWlKgJo9qqjFFNGKdVxpgzd8cM5AoHC0FFY3Nn6GwAk1Tn7T_pH3t7fN8</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Blaszczynski, Jerzy</creator><creator>Slowinski, Roman</creator><creator>SzelAe?g, Marcin</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Sequential covering rule induction algorithm for variable consistency rough set approaches</title><author>Blaszczynski, Jerzy ; Slowinski, Roman ; SzelAe?g, Marcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-98d2494c262cabf9b8a11ccc1d4ef25f8147e99e0c3e23e5b4d59f9d47d951593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Consistency</topic><topic>Covering</topic><topic>Decision analysis</topic><topic>Decision rule</topic><topic>Dominance</topic><topic>Dominance-based rough set approach</topic><topic>Monotonicity</topic><topic>Rough set</topic><topic>Rough set models</topic><topic>Rule induction</topic><topic>Sequential covering</topic><topic>Variable consistency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blaszczynski, Jerzy</creatorcontrib><creatorcontrib>Slowinski, Roman</creatorcontrib><creatorcontrib>SzelAe?g, Marcin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blaszczynski, Jerzy</au><au>Slowinski, Roman</au><au>SzelAe?g, Marcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential covering rule induction algorithm for variable consistency rough set approaches</atitle><jtitle>Information sciences</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>181</volume><issue>5</issue><spage>987</spage><epage>1002</epage><pages>987-1002</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>We present a general rule induction algorithm based on sequential covering, suitable for variable consistency rough set approaches. This algorithm, called VC-DomLEM, can be used for both ordered and non-ordered data. In the case of ordered data, the rough set model employs dominance relation, and in the case of non-ordered data, it employs indiscernibility relation. VC-DomLEM generates a minimal set of decision rules. These rules are characterized by a satisfactory value of the chosen consistency measure. We analyze properties of induced decision rules, and discuss conditions of correct rule induction. Moreover, we show how to improve rule induction efficiency due to application of consistency measures with desirable monotonicity properties.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2010.10.030</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2011-03, Vol.181 (5), p.987-1002
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_864413409
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Consistency
Covering
Decision analysis
Decision rule
Dominance
Dominance-based rough set approach
Monotonicity
Rough set
Rough set models
Rule induction
Sequential covering
Variable consistency
title Sequential covering rule induction algorithm for variable consistency rough set approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20covering%20rule%20induction%20algorithm%20for%20variable%20consistency%20rough%20set%20approaches&rft.jtitle=Information%20sciences&rft.au=Blaszczynski,%20Jerzy&rft.date=2011-03-01&rft.volume=181&rft.issue=5&rft.spage=987&rft.epage=1002&rft.pages=987-1002&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2010.10.030&rft_dat=%3Cproquest_cross%3E864413409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864413409&rft_id=info:pmid/&rft_els_id=S0020025510005359&rfr_iscdi=true