A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites
In this paper, the incremental formulation for the mean-field homogenization (MFH) of elasto-plastic composites is enriched by including second statistical moments of per-phase strain increment fields, thus combining two advantages. The first one is to handle non-monotonic loading histories and the...
Gespeichert in:
Veröffentlicht in: | International journal of plasticity 2011-03, Vol.27 (3), p.352-371 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 371 |
---|---|
container_issue | 3 |
container_start_page | 352 |
container_title | International journal of plasticity |
container_volume | 27 |
creator | Doghri, I. Brassart, L. Adam, L. Gérard, J.-S. |
description | In this paper, the incremental formulation for the mean-field homogenization (MFH) of elasto-plastic composites is enriched by including second statistical moments of per-phase strain increment fields, thus combining two advantages. The first one is to handle non-monotonic loading histories and the second is to better account for the heterogeneity of microscopic fields. The proposal is currently restricted to elasto-plasticity with J2 flow theory in each phase, under the small perturbation hypothesis. The formulation crucially exploits the return mapping algorithm for the J2 model, with its two steps: elastic predictor, and plastic corrections. It is shown that the second-moment measure of the average von Mises stress in each phase at the elastic predictor step plays a major role in the computation of both the average stress and the comparison tangent operator. The proposal is implemented for an extended Mori–Tanaka scheme. Predictions are compared to results provided by full-field, finite element computations of representative volume elements or unit cells, for various composite materials, with polymer or metal matrices. There are cases where the predictions of the proposed modeling improve significantly over those of a first-order incremental formulation. |
doi_str_mv | 10.1016/j.ijplas.2010.06.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864413275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641910000835</els_id><sourcerecordid>864413275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-76802261202afaee864dd3701c28ae048e758c5d9d76b9bc23b742e038db8c993</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw-9iKeukzRN04uwiF8geNFzyCZTzdIma5IV9Nfb0sWjpxmGZ9555yXkgsKSAhXXm6XbbHudlgzGEYglAD8gCyqbtmS05odkAQ1vS8Fpe0xOUtoAQC0ruiDdqkhogrflEAb0uXDeRJw63RddiMOu19kFP_VF_sBiQO3LzmFvi48whHf07mcmQlfgaCKHcvKSnSlMGLYhuYzpjBx1uk94vq-n5O3-7vX2sXx-eXi6XT2XphIyl42QwJigDJjuNKIU3NqqAWqY1AhcYlNLU9vWNmLdrg2r1g1nCJW0a2natjolV7PuNobPHaasBpcM9r32GHZJjYKcVqypR5LPpIkhpYid2kY36PitKKgpVbVRc6pqSlWBUGOq49rl_oBORvdd1N649LfLqhYolTByNzOH47dfDqNKxqE3aF1Ek5UN7v9Dv17ZkPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864413275</pqid></control><display><type>article</type><title>A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Doghri, I. ; Brassart, L. ; Adam, L. ; Gérard, J.-S.</creator><creatorcontrib>Doghri, I. ; Brassart, L. ; Adam, L. ; Gérard, J.-S.</creatorcontrib><description>In this paper, the incremental formulation for the mean-field homogenization (MFH) of elasto-plastic composites is enriched by including second statistical moments of per-phase strain increment fields, thus combining two advantages. The first one is to handle non-monotonic loading histories and the second is to better account for the heterogeneity of microscopic fields. The proposal is currently restricted to elasto-plasticity with J2 flow theory in each phase, under the small perturbation hypothesis. The formulation crucially exploits the return mapping algorithm for the J2 model, with its two steps: elastic predictor, and plastic corrections. It is shown that the second-moment measure of the average von Mises stress in each phase at the elastic predictor step plays a major role in the computation of both the average stress and the comparison tangent operator. The proposal is implemented for an extended Mori–Tanaka scheme. Predictions are compared to results provided by full-field, finite element computations of representative volume elements or unit cells, for various composite materials, with polymer or metal matrices. There are cases where the predictions of the proposed modeling improve significantly over those of a first-order incremental formulation.</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2010.06.004</identifier><identifier>CODEN: IJPLER</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Composite materials ; Composites ; Computation ; Computational micromechanics ; Elasto-plasticity ; Elastoplasticity ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fundamental areas of phenomenology (including applications) ; Homogenization ; Homogenizing ; Incremental formulation ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical analysis ; Mathematical models ; Mean-field homogenization ; Physics ; Polymer industry, paints, wood ; Proposals ; Solid mechanics ; Stresses ; Structural and continuum mechanics ; Technology of polymers</subject><ispartof>International journal of plasticity, 2011-03, Vol.27 (3), p.352-371</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-76802261202afaee864dd3701c28ae048e758c5d9d76b9bc23b742e038db8c993</citedby><cites>FETCH-LOGICAL-c368t-76802261202afaee864dd3701c28ae048e758c5d9d76b9bc23b742e038db8c993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0749641910000835$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23901180$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Doghri, I.</creatorcontrib><creatorcontrib>Brassart, L.</creatorcontrib><creatorcontrib>Adam, L.</creatorcontrib><creatorcontrib>Gérard, J.-S.</creatorcontrib><title>A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites</title><title>International journal of plasticity</title><description>In this paper, the incremental formulation for the mean-field homogenization (MFH) of elasto-plastic composites is enriched by including second statistical moments of per-phase strain increment fields, thus combining two advantages. The first one is to handle non-monotonic loading histories and the second is to better account for the heterogeneity of microscopic fields. The proposal is currently restricted to elasto-plasticity with J2 flow theory in each phase, under the small perturbation hypothesis. The formulation crucially exploits the return mapping algorithm for the J2 model, with its two steps: elastic predictor, and plastic corrections. It is shown that the second-moment measure of the average von Mises stress in each phase at the elastic predictor step plays a major role in the computation of both the average stress and the comparison tangent operator. The proposal is implemented for an extended Mori–Tanaka scheme. Predictions are compared to results provided by full-field, finite element computations of representative volume elements or unit cells, for various composite materials, with polymer or metal matrices. There are cases where the predictions of the proposed modeling improve significantly over those of a first-order incremental formulation.</description><subject>Applied sciences</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Computation</subject><subject>Computational micromechanics</subject><subject>Elasto-plasticity</subject><subject>Elastoplasticity</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Homogenization</subject><subject>Homogenizing</subject><subject>Incremental formulation</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mean-field homogenization</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Proposals</subject><subject>Solid mechanics</subject><subject>Stresses</subject><subject>Structural and continuum mechanics</subject><subject>Technology of polymers</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw-9iKeukzRN04uwiF8geNFzyCZTzdIma5IV9Nfb0sWjpxmGZ9555yXkgsKSAhXXm6XbbHudlgzGEYglAD8gCyqbtmS05odkAQ1vS8Fpe0xOUtoAQC0ruiDdqkhogrflEAb0uXDeRJw63RddiMOu19kFP_VF_sBiQO3LzmFvi48whHf07mcmQlfgaCKHcvKSnSlMGLYhuYzpjBx1uk94vq-n5O3-7vX2sXx-eXi6XT2XphIyl42QwJigDJjuNKIU3NqqAWqY1AhcYlNLU9vWNmLdrg2r1g1nCJW0a2natjolV7PuNobPHaasBpcM9r32GHZJjYKcVqypR5LPpIkhpYid2kY36PitKKgpVbVRc6pqSlWBUGOq49rl_oBORvdd1N649LfLqhYolTByNzOH47dfDqNKxqE3aF1Ek5UN7v9Dv17ZkPo</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Doghri, I.</creator><creator>Brassart, L.</creator><creator>Adam, L.</creator><creator>Gérard, J.-S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20110301</creationdate><title>A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites</title><author>Doghri, I. ; Brassart, L. ; Adam, L. ; Gérard, J.-S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-76802261202afaee864dd3701c28ae048e758c5d9d76b9bc23b742e038db8c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Computation</topic><topic>Computational micromechanics</topic><topic>Elasto-plasticity</topic><topic>Elastoplasticity</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Homogenization</topic><topic>Homogenizing</topic><topic>Incremental formulation</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mean-field homogenization</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Proposals</topic><topic>Solid mechanics</topic><topic>Stresses</topic><topic>Structural and continuum mechanics</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doghri, I.</creatorcontrib><creatorcontrib>Brassart, L.</creatorcontrib><creatorcontrib>Adam, L.</creatorcontrib><creatorcontrib>Gérard, J.-S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doghri, I.</au><au>Brassart, L.</au><au>Adam, L.</au><au>Gérard, J.-S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites</atitle><jtitle>International journal of plasticity</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>27</volume><issue>3</issue><spage>352</spage><epage>371</epage><pages>352-371</pages><issn>0749-6419</issn><eissn>1879-2154</eissn><coden>IJPLER</coden><abstract>In this paper, the incremental formulation for the mean-field homogenization (MFH) of elasto-plastic composites is enriched by including second statistical moments of per-phase strain increment fields, thus combining two advantages. The first one is to handle non-monotonic loading histories and the second is to better account for the heterogeneity of microscopic fields. The proposal is currently restricted to elasto-plasticity with J2 flow theory in each phase, under the small perturbation hypothesis. The formulation crucially exploits the return mapping algorithm for the J2 model, with its two steps: elastic predictor, and plastic corrections. It is shown that the second-moment measure of the average von Mises stress in each phase at the elastic predictor step plays a major role in the computation of both the average stress and the comparison tangent operator. The proposal is implemented for an extended Mori–Tanaka scheme. Predictions are compared to results provided by full-field, finite element computations of representative volume elements or unit cells, for various composite materials, with polymer or metal matrices. There are cases where the predictions of the proposed modeling improve significantly over those of a first-order incremental formulation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2010.06.004</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-6419 |
ispartof | International journal of plasticity, 2011-03, Vol.27 (3), p.352-371 |
issn | 0749-6419 1879-2154 |
language | eng |
recordid | cdi_proquest_miscellaneous_864413275 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Composite materials Composites Computation Computational micromechanics Elasto-plasticity Elastoplasticity Exact sciences and technology Forms of application and semi-finished materials Fundamental areas of phenomenology (including applications) Homogenization Homogenizing Incremental formulation Inelasticity (thermoplasticity, viscoplasticity...) Mathematical analysis Mathematical models Mean-field homogenization Physics Polymer industry, paints, wood Proposals Solid mechanics Stresses Structural and continuum mechanics Technology of polymers |
title | A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second-moment%20incremental%20formulation%20for%20the%20mean-field%20homogenization%20of%20elasto-plastic%20composites&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Doghri,%20I.&rft.date=2011-03-01&rft.volume=27&rft.issue=3&rft.spage=352&rft.epage=371&rft.pages=352-371&rft.issn=0749-6419&rft.eissn=1879-2154&rft.coden=IJPLER&rft_id=info:doi/10.1016/j.ijplas.2010.06.004&rft_dat=%3Cproquest_cross%3E864413275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864413275&rft_id=info:pmid/&rft_els_id=S0749641910000835&rfr_iscdi=true |