A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites

In this paper, the incremental formulation for the mean-field homogenization (MFH) of elasto-plastic composites is enriched by including second statistical moments of per-phase strain increment fields, thus combining two advantages. The first one is to handle non-monotonic loading histories and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of plasticity 2011-03, Vol.27 (3), p.352-371
Hauptverfasser: Doghri, I., Brassart, L., Adam, L., Gérard, J.-S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 371
container_issue 3
container_start_page 352
container_title International journal of plasticity
container_volume 27
creator Doghri, I.
Brassart, L.
Adam, L.
Gérard, J.-S.
description In this paper, the incremental formulation for the mean-field homogenization (MFH) of elasto-plastic composites is enriched by including second statistical moments of per-phase strain increment fields, thus combining two advantages. The first one is to handle non-monotonic loading histories and the second is to better account for the heterogeneity of microscopic fields. The proposal is currently restricted to elasto-plasticity with J2 flow theory in each phase, under the small perturbation hypothesis. The formulation crucially exploits the return mapping algorithm for the J2 model, with its two steps: elastic predictor, and plastic corrections. It is shown that the second-moment measure of the average von Mises stress in each phase at the elastic predictor step plays a major role in the computation of both the average stress and the comparison tangent operator. The proposal is implemented for an extended Mori–Tanaka scheme. Predictions are compared to results provided by full-field, finite element computations of representative volume elements or unit cells, for various composite materials, with polymer or metal matrices. There are cases where the predictions of the proposed modeling improve significantly over those of a first-order incremental formulation.
doi_str_mv 10.1016/j.ijplas.2010.06.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864413275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641910000835</els_id><sourcerecordid>864413275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-76802261202afaee864dd3701c28ae048e758c5d9d76b9bc23b742e038db8c993</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw-9iKeukzRN04uwiF8geNFzyCZTzdIma5IV9Nfb0sWjpxmGZ9555yXkgsKSAhXXm6XbbHudlgzGEYglAD8gCyqbtmS05odkAQ1vS8Fpe0xOUtoAQC0ruiDdqkhogrflEAb0uXDeRJw63RddiMOu19kFP_VF_sBiQO3LzmFvi48whHf07mcmQlfgaCKHcvKSnSlMGLYhuYzpjBx1uk94vq-n5O3-7vX2sXx-eXi6XT2XphIyl42QwJigDJjuNKIU3NqqAWqY1AhcYlNLU9vWNmLdrg2r1g1nCJW0a2natjolV7PuNobPHaasBpcM9r32GHZJjYKcVqypR5LPpIkhpYid2kY36PitKKgpVbVRc6pqSlWBUGOq49rl_oBORvdd1N649LfLqhYolTByNzOH47dfDqNKxqE3aF1Ek5UN7v9Dv17ZkPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864413275</pqid></control><display><type>article</type><title>A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Doghri, I. ; Brassart, L. ; Adam, L. ; Gérard, J.-S.</creator><creatorcontrib>Doghri, I. ; Brassart, L. ; Adam, L. ; Gérard, J.-S.</creatorcontrib><description>In this paper, the incremental formulation for the mean-field homogenization (MFH) of elasto-plastic composites is enriched by including second statistical moments of per-phase strain increment fields, thus combining two advantages. The first one is to handle non-monotonic loading histories and the second is to better account for the heterogeneity of microscopic fields. The proposal is currently restricted to elasto-plasticity with J2 flow theory in each phase, under the small perturbation hypothesis. The formulation crucially exploits the return mapping algorithm for the J2 model, with its two steps: elastic predictor, and plastic corrections. It is shown that the second-moment measure of the average von Mises stress in each phase at the elastic predictor step plays a major role in the computation of both the average stress and the comparison tangent operator. The proposal is implemented for an extended Mori–Tanaka scheme. Predictions are compared to results provided by full-field, finite element computations of representative volume elements or unit cells, for various composite materials, with polymer or metal matrices. There are cases where the predictions of the proposed modeling improve significantly over those of a first-order incremental formulation.</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2010.06.004</identifier><identifier>CODEN: IJPLER</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Composite materials ; Composites ; Computation ; Computational micromechanics ; Elasto-plasticity ; Elastoplasticity ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fundamental areas of phenomenology (including applications) ; Homogenization ; Homogenizing ; Incremental formulation ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical analysis ; Mathematical models ; Mean-field homogenization ; Physics ; Polymer industry, paints, wood ; Proposals ; Solid mechanics ; Stresses ; Structural and continuum mechanics ; Technology of polymers</subject><ispartof>International journal of plasticity, 2011-03, Vol.27 (3), p.352-371</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-76802261202afaee864dd3701c28ae048e758c5d9d76b9bc23b742e038db8c993</citedby><cites>FETCH-LOGICAL-c368t-76802261202afaee864dd3701c28ae048e758c5d9d76b9bc23b742e038db8c993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0749641910000835$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23901180$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Doghri, I.</creatorcontrib><creatorcontrib>Brassart, L.</creatorcontrib><creatorcontrib>Adam, L.</creatorcontrib><creatorcontrib>Gérard, J.-S.</creatorcontrib><title>A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites</title><title>International journal of plasticity</title><description>In this paper, the incremental formulation for the mean-field homogenization (MFH) of elasto-plastic composites is enriched by including second statistical moments of per-phase strain increment fields, thus combining two advantages. The first one is to handle non-monotonic loading histories and the second is to better account for the heterogeneity of microscopic fields. The proposal is currently restricted to elasto-plasticity with J2 flow theory in each phase, under the small perturbation hypothesis. The formulation crucially exploits the return mapping algorithm for the J2 model, with its two steps: elastic predictor, and plastic corrections. It is shown that the second-moment measure of the average von Mises stress in each phase at the elastic predictor step plays a major role in the computation of both the average stress and the comparison tangent operator. The proposal is implemented for an extended Mori–Tanaka scheme. Predictions are compared to results provided by full-field, finite element computations of representative volume elements or unit cells, for various composite materials, with polymer or metal matrices. There are cases where the predictions of the proposed modeling improve significantly over those of a first-order incremental formulation.</description><subject>Applied sciences</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Computation</subject><subject>Computational micromechanics</subject><subject>Elasto-plasticity</subject><subject>Elastoplasticity</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Homogenization</subject><subject>Homogenizing</subject><subject>Incremental formulation</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mean-field homogenization</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Proposals</subject><subject>Solid mechanics</subject><subject>Stresses</subject><subject>Structural and continuum mechanics</subject><subject>Technology of polymers</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw-9iKeukzRN04uwiF8geNFzyCZTzdIma5IV9Nfb0sWjpxmGZ9555yXkgsKSAhXXm6XbbHudlgzGEYglAD8gCyqbtmS05odkAQ1vS8Fpe0xOUtoAQC0ruiDdqkhogrflEAb0uXDeRJw63RddiMOu19kFP_VF_sBiQO3LzmFvi48whHf07mcmQlfgaCKHcvKSnSlMGLYhuYzpjBx1uk94vq-n5O3-7vX2sXx-eXi6XT2XphIyl42QwJigDJjuNKIU3NqqAWqY1AhcYlNLU9vWNmLdrg2r1g1nCJW0a2natjolV7PuNobPHaasBpcM9r32GHZJjYKcVqypR5LPpIkhpYid2kY36PitKKgpVbVRc6pqSlWBUGOq49rl_oBORvdd1N649LfLqhYolTByNzOH47dfDqNKxqE3aF1Ek5UN7v9Dv17ZkPo</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Doghri, I.</creator><creator>Brassart, L.</creator><creator>Adam, L.</creator><creator>Gérard, J.-S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20110301</creationdate><title>A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites</title><author>Doghri, I. ; Brassart, L. ; Adam, L. ; Gérard, J.-S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-76802261202afaee864dd3701c28ae048e758c5d9d76b9bc23b742e038db8c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Computation</topic><topic>Computational micromechanics</topic><topic>Elasto-plasticity</topic><topic>Elastoplasticity</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Homogenization</topic><topic>Homogenizing</topic><topic>Incremental formulation</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mean-field homogenization</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Proposals</topic><topic>Solid mechanics</topic><topic>Stresses</topic><topic>Structural and continuum mechanics</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doghri, I.</creatorcontrib><creatorcontrib>Brassart, L.</creatorcontrib><creatorcontrib>Adam, L.</creatorcontrib><creatorcontrib>Gérard, J.-S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doghri, I.</au><au>Brassart, L.</au><au>Adam, L.</au><au>Gérard, J.-S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites</atitle><jtitle>International journal of plasticity</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>27</volume><issue>3</issue><spage>352</spage><epage>371</epage><pages>352-371</pages><issn>0749-6419</issn><eissn>1879-2154</eissn><coden>IJPLER</coden><abstract>In this paper, the incremental formulation for the mean-field homogenization (MFH) of elasto-plastic composites is enriched by including second statistical moments of per-phase strain increment fields, thus combining two advantages. The first one is to handle non-monotonic loading histories and the second is to better account for the heterogeneity of microscopic fields. The proposal is currently restricted to elasto-plasticity with J2 flow theory in each phase, under the small perturbation hypothesis. The formulation crucially exploits the return mapping algorithm for the J2 model, with its two steps: elastic predictor, and plastic corrections. It is shown that the second-moment measure of the average von Mises stress in each phase at the elastic predictor step plays a major role in the computation of both the average stress and the comparison tangent operator. The proposal is implemented for an extended Mori–Tanaka scheme. Predictions are compared to results provided by full-field, finite element computations of representative volume elements or unit cells, for various composite materials, with polymer or metal matrices. There are cases where the predictions of the proposed modeling improve significantly over those of a first-order incremental formulation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2010.06.004</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-6419
ispartof International journal of plasticity, 2011-03, Vol.27 (3), p.352-371
issn 0749-6419
1879-2154
language eng
recordid cdi_proquest_miscellaneous_864413275
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Composite materials
Composites
Computation
Computational micromechanics
Elasto-plasticity
Elastoplasticity
Exact sciences and technology
Forms of application and semi-finished materials
Fundamental areas of phenomenology (including applications)
Homogenization
Homogenizing
Incremental formulation
Inelasticity (thermoplasticity, viscoplasticity...)
Mathematical analysis
Mathematical models
Mean-field homogenization
Physics
Polymer industry, paints, wood
Proposals
Solid mechanics
Stresses
Structural and continuum mechanics
Technology of polymers
title A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second-moment%20incremental%20formulation%20for%20the%20mean-field%20homogenization%20of%20elasto-plastic%20composites&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Doghri,%20I.&rft.date=2011-03-01&rft.volume=27&rft.issue=3&rft.spage=352&rft.epage=371&rft.pages=352-371&rft.issn=0749-6419&rft.eissn=1879-2154&rft.coden=IJPLER&rft_id=info:doi/10.1016/j.ijplas.2010.06.004&rft_dat=%3Cproquest_cross%3E864413275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864413275&rft_id=info:pmid/&rft_els_id=S0749641910000835&rfr_iscdi=true