Finite element simulation of tensile bond strength of atmospheric plasma spraying thermal barrier coatings

Before thermal cycling or thermal exposure, tensile failure of atmospheric plasma spraying (APS) thermal barrier coatings (TBCs) usually occurs by spallation of the ceramic coating at or near the bond coating, due to the accumulation of microcracks damage. In the current paper, finite element geomet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2011-01, Vol.205 (8), p.2964-2969
Hauptverfasser: Wei, Shen, Fu-chi, Wang, Qun-bo, Fan, Zhuang, Ma, Xue-wen, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2969
container_issue 8
container_start_page 2964
container_title Surface & coatings technology
container_volume 205
creator Wei, Shen
Fu-chi, Wang
Qun-bo, Fan
Zhuang, Ma
Xue-wen, Yang
description Before thermal cycling or thermal exposure, tensile failure of atmospheric plasma spraying (APS) thermal barrier coatings (TBCs) usually occurs by spallation of the ceramic coating at or near the bond coating, due to the accumulation of microcracks damage. In the current paper, finite element geometric models based on the real microstructural image of TBCs are generated, and the microcracks growth induced by the uniaxial tensile loading is simulated by employing LS-DYNA code with a failure criterion determined by maximum tensile stress of yttria partially stabilized zirconia (YSZ). Additionally, the modified Brazilian disc specimens with a central hole are used to obtain the intrinsic static failure criterion of non-defective YSZ. By means of a statistical method in conjunction with finite element method (FEM) results, the tensile bond strength of APS TBCs is calculated as 40 MPa in this paper. Meanwhile, damage accumulation and microcrack growth can be observed vividly by simulation processing. The numerical simulation result agrees well with the corresponding experimental result. It is shown that the methodology developed in this paper is very efficient in understanding damage evolution in TBCs. ►Finite element models based on the realistic microstructural images of TBCs. ►The fracture tensile stress of dense YSZ is 215 MPa by MBD specimens. ►Modeling microcracks growth of TBCs during the tensile process. ►The tensile bond strength of simulation results is 40 MPa by Weibull analysis.
doi_str_mv 10.1016/j.surfcoat.2010.11.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864411573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897210011485</els_id><sourcerecordid>864411573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-d55244aba9e75cd52d84b5fbea333798f057b1d0b90b550c008b31a37f81e7283</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS0EEkvpX6h8QZyytWN77dxAFYVKlXqBs2U7k9Yrxw4eL1L_PYm2cO1ppDdvZt58hFxxtueMH66PezzVKRTX9j3bRL5nTLwhO2700Akh9VuyY73SnRl0_558QDwyxrge5I4cb2OODSgkmCE3inE-JddiybRMtEHGmID6kkeKrUJ-bE9bw7W54PIENQa6JIezo7hU9xzzI22rPLtEvas1QqVbslXHj-Td5BLC5Uu9IL9uv_28-dHdP3y_u_l63wWhZetGpXopnXcDaBVG1Y9GejV5cEIIPZiJKe35yPzAvFIsMGa84E7oyXDQvREX5PN571LL7xNgs3PEACm5DOWE1hyk5FxpsToPZ2eoBbHCZJcaZ1efLWd2Y2uP9h9bu7G1nNuV7Tr46eWEw-DSVF0OEf9P98IYqYYtypezD9Z__6wwLIYIOcAYK4RmxxJfO_UXkMuVaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864411573</pqid></control><display><type>article</type><title>Finite element simulation of tensile bond strength of atmospheric plasma spraying thermal barrier coatings</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wei, Shen ; Fu-chi, Wang ; Qun-bo, Fan ; Zhuang, Ma ; Xue-wen, Yang</creator><creatorcontrib>Wei, Shen ; Fu-chi, Wang ; Qun-bo, Fan ; Zhuang, Ma ; Xue-wen, Yang</creatorcontrib><description>Before thermal cycling or thermal exposure, tensile failure of atmospheric plasma spraying (APS) thermal barrier coatings (TBCs) usually occurs by spallation of the ceramic coating at or near the bond coating, due to the accumulation of microcracks damage. In the current paper, finite element geometric models based on the real microstructural image of TBCs are generated, and the microcracks growth induced by the uniaxial tensile loading is simulated by employing LS-DYNA code with a failure criterion determined by maximum tensile stress of yttria partially stabilized zirconia (YSZ). Additionally, the modified Brazilian disc specimens with a central hole are used to obtain the intrinsic static failure criterion of non-defective YSZ. By means of a statistical method in conjunction with finite element method (FEM) results, the tensile bond strength of APS TBCs is calculated as 40 MPa in this paper. Meanwhile, damage accumulation and microcrack growth can be observed vividly by simulation processing. The numerical simulation result agrees well with the corresponding experimental result. It is shown that the methodology developed in this paper is very efficient in understanding damage evolution in TBCs. ►Finite element models based on the realistic microstructural images of TBCs. ►The fracture tensile stress of dense YSZ is 215 MPa by MBD specimens. ►Modeling microcracks growth of TBCs during the tensile process. ►The tensile bond strength of simulation results is 40 MPa by Weibull analysis.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2010.11.003</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Coatings ; Computer simulation ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Failure ; FEM ; Finite element method ; Materials science ; Mathematical analysis ; Mathematical models ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microcracks ; Modified Brazilian disc ; Nonmetallic coatings ; Physics ; Production techniques ; Surface treatment ; Surface treatments ; Tensile bond strength ; Yttria stabilized zirconia</subject><ispartof>Surface &amp; coatings technology, 2011-01, Vol.205 (8), p.2964-2969</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-d55244aba9e75cd52d84b5fbea333798f057b1d0b90b550c008b31a37f81e7283</citedby><cites>FETCH-LOGICAL-c374t-d55244aba9e75cd52d84b5fbea333798f057b1d0b90b550c008b31a37f81e7283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2010.11.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23884598$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Shen</creatorcontrib><creatorcontrib>Fu-chi, Wang</creatorcontrib><creatorcontrib>Qun-bo, Fan</creatorcontrib><creatorcontrib>Zhuang, Ma</creatorcontrib><creatorcontrib>Xue-wen, Yang</creatorcontrib><title>Finite element simulation of tensile bond strength of atmospheric plasma spraying thermal barrier coatings</title><title>Surface &amp; coatings technology</title><description>Before thermal cycling or thermal exposure, tensile failure of atmospheric plasma spraying (APS) thermal barrier coatings (TBCs) usually occurs by spallation of the ceramic coating at or near the bond coating, due to the accumulation of microcracks damage. In the current paper, finite element geometric models based on the real microstructural image of TBCs are generated, and the microcracks growth induced by the uniaxial tensile loading is simulated by employing LS-DYNA code with a failure criterion determined by maximum tensile stress of yttria partially stabilized zirconia (YSZ). Additionally, the modified Brazilian disc specimens with a central hole are used to obtain the intrinsic static failure criterion of non-defective YSZ. By means of a statistical method in conjunction with finite element method (FEM) results, the tensile bond strength of APS TBCs is calculated as 40 MPa in this paper. Meanwhile, damage accumulation and microcrack growth can be observed vividly by simulation processing. The numerical simulation result agrees well with the corresponding experimental result. It is shown that the methodology developed in this paper is very efficient in understanding damage evolution in TBCs. ►Finite element models based on the realistic microstructural images of TBCs. ►The fracture tensile stress of dense YSZ is 215 MPa by MBD specimens. ►Modeling microcracks growth of TBCs during the tensile process. ►The tensile bond strength of simulation results is 40 MPa by Weibull analysis.</description><subject>Applied sciences</subject><subject>Coatings</subject><subject>Computer simulation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>FEM</subject><subject>Finite element method</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microcracks</subject><subject>Modified Brazilian disc</subject><subject>Nonmetallic coatings</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Surface treatment</subject><subject>Surface treatments</subject><subject>Tensile bond strength</subject><subject>Yttria stabilized zirconia</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQhS0EEkvpX6h8QZyytWN77dxAFYVKlXqBs2U7k9Yrxw4eL1L_PYm2cO1ppDdvZt58hFxxtueMH66PezzVKRTX9j3bRL5nTLwhO2700Akh9VuyY73SnRl0_558QDwyxrge5I4cb2OODSgkmCE3inE-JddiybRMtEHGmID6kkeKrUJ-bE9bw7W54PIENQa6JIezo7hU9xzzI22rPLtEvas1QqVbslXHj-Td5BLC5Uu9IL9uv_28-dHdP3y_u_l63wWhZetGpXopnXcDaBVG1Y9GejV5cEIIPZiJKe35yPzAvFIsMGa84E7oyXDQvREX5PN571LL7xNgs3PEACm5DOWE1hyk5FxpsToPZ2eoBbHCZJcaZ1efLWd2Y2uP9h9bu7G1nNuV7Tr46eWEw-DSVF0OEf9P98IYqYYtypezD9Z__6wwLIYIOcAYK4RmxxJfO_UXkMuVaw</recordid><startdate>20110125</startdate><enddate>20110125</enddate><creator>Wei, Shen</creator><creator>Fu-chi, Wang</creator><creator>Qun-bo, Fan</creator><creator>Zhuang, Ma</creator><creator>Xue-wen, Yang</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110125</creationdate><title>Finite element simulation of tensile bond strength of atmospheric plasma spraying thermal barrier coatings</title><author>Wei, Shen ; Fu-chi, Wang ; Qun-bo, Fan ; Zhuang, Ma ; Xue-wen, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-d55244aba9e75cd52d84b5fbea333798f057b1d0b90b550c008b31a37f81e7283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Coatings</topic><topic>Computer simulation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>FEM</topic><topic>Finite element method</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microcracks</topic><topic>Modified Brazilian disc</topic><topic>Nonmetallic coatings</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Surface treatment</topic><topic>Surface treatments</topic><topic>Tensile bond strength</topic><topic>Yttria stabilized zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Shen</creatorcontrib><creatorcontrib>Fu-chi, Wang</creatorcontrib><creatorcontrib>Qun-bo, Fan</creatorcontrib><creatorcontrib>Zhuang, Ma</creatorcontrib><creatorcontrib>Xue-wen, Yang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Shen</au><au>Fu-chi, Wang</au><au>Qun-bo, Fan</au><au>Zhuang, Ma</au><au>Xue-wen, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element simulation of tensile bond strength of atmospheric plasma spraying thermal barrier coatings</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2011-01-25</date><risdate>2011</risdate><volume>205</volume><issue>8</issue><spage>2964</spage><epage>2969</epage><pages>2964-2969</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Before thermal cycling or thermal exposure, tensile failure of atmospheric plasma spraying (APS) thermal barrier coatings (TBCs) usually occurs by spallation of the ceramic coating at or near the bond coating, due to the accumulation of microcracks damage. In the current paper, finite element geometric models based on the real microstructural image of TBCs are generated, and the microcracks growth induced by the uniaxial tensile loading is simulated by employing LS-DYNA code with a failure criterion determined by maximum tensile stress of yttria partially stabilized zirconia (YSZ). Additionally, the modified Brazilian disc specimens with a central hole are used to obtain the intrinsic static failure criterion of non-defective YSZ. By means of a statistical method in conjunction with finite element method (FEM) results, the tensile bond strength of APS TBCs is calculated as 40 MPa in this paper. Meanwhile, damage accumulation and microcrack growth can be observed vividly by simulation processing. The numerical simulation result agrees well with the corresponding experimental result. It is shown that the methodology developed in this paper is very efficient in understanding damage evolution in TBCs. ►Finite element models based on the realistic microstructural images of TBCs. ►The fracture tensile stress of dense YSZ is 215 MPa by MBD specimens. ►Modeling microcracks growth of TBCs during the tensile process. ►The tensile bond strength of simulation results is 40 MPa by Weibull analysis.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2010.11.003</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2011-01, Vol.205 (8), p.2964-2969
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_864411573
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Coatings
Computer simulation
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Failure
FEM
Finite element method
Materials science
Mathematical analysis
Mathematical models
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Microcracks
Modified Brazilian disc
Nonmetallic coatings
Physics
Production techniques
Surface treatment
Surface treatments
Tensile bond strength
Yttria stabilized zirconia
title Finite element simulation of tensile bond strength of atmospheric plasma spraying thermal barrier coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20simulation%20of%20tensile%20bond%20strength%20of%20atmospheric%20plasma%20spraying%20thermal%20barrier%20coatings&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Wei,%20Shen&rft.date=2011-01-25&rft.volume=205&rft.issue=8&rft.spage=2964&rft.epage=2969&rft.pages=2964-2969&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2010.11.003&rft_dat=%3Cproquest_cross%3E864411573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864411573&rft_id=info:pmid/&rft_els_id=S0257897210011485&rfr_iscdi=true