Improved Pattern Clustering Algorithm for Recognizing Transversal Distribution of Steel Strip Thickness

Transversal distribution of the steel strip thickness in the entry section of the cold rolling mill seriously affects to the flatness and transversal thickness precision of the final products. Pattern clustering method is introduced into the steel rolling field and used in the patterns recognition o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of iron and steel research, international international, 2009-09, Vol.16 (5), p.50-55
Hauptverfasser: TANG, Cheng-long, WANG, Shi-gang, LIANG, Qin-hua, XU, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 5
container_start_page 50
container_title Journal of iron and steel research, international
container_volume 16
creator TANG, Cheng-long
WANG, Shi-gang
LIANG, Qin-hua
XU, Wei
description Transversal distribution of the steel strip thickness in the entry section of the cold rolling mill seriously affects to the flatness and transversal thickness precision of the final products. Pattern clustering method is introduced into the steel rolling field and used in the patterns recognition of transversal distribution of the steel strip thickness. The well-known k-means clustering algorithm has the advantage of being easily completed, but still has some drawbacks. An improved k-means clustering algorithm is presented, and the main improvements include: (1) the initial clustering points are preselected according to the density queue of data objects; and (2) Mahalanobis distance is applied instead of Euclidean distance in the actual application. Compared to the patterns obtained from the common kmeans algorithm, the patterns identified by the improved algorithm show that the improved clustering algorithm is well suitable for the patterns' recognition of transversal distribution of steel strip thickness and it will be useful in online quality control system.
doi_str_mv 10.1016/S1006-706X(10)60010-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864409280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>31678596</cqvip_id><els_id>S1006706X10600106</els_id><sourcerecordid>864409280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-ad8ed015889d7a586682ada6cce167a32308d924b91b703a3ff17851b3da47cb3</originalsourceid><addsrcrecordid>eNqFkVFPHCEUhUlTk26sP6EJ8UX7MC0MMwzzZMyqrYmJpq6Jb4SBO7PoLKzAbNL-ehnX9FUe4AbOuXA-EPpGyQ9KKP95TwnhRUP44ykl3zkhlBT8E1qUZS5YK8RntPgv-YKOYnwi82g5K8UCDdebbfA7MPhOpQTB4eU4xVxYN-DzcfDBpvUG9z7gP6D94Oy_-WQVlIs7CFGN-MLGFGw3Jesd9j2-TwBjnoPd4tXa6mcHMX5FB70aIxy9r4fo4epytfxd3Nz-ul6e3xS6onUqlBFgCK2FaE2jasG5KJVRXGugvFGsZESYtqy6lnYNYYr1PW1ETTtmVNXojh2ik33fnOplgpjkxkYN46gc-ClKwauKtKUgWVnvlTr4GAP0chvsRoW_khI5o5VvaOXMbd56Qyt59vG9L25nSBDkk5-Cy6E-NJ7tjZDz72w2Rm3BaTA2gE7SePthh-P3J6-9G17y7bJT-rm3I0iW-Yg6_-orQ7CeQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864409280</pqid></control><display><type>article</type><title>Improved Pattern Clustering Algorithm for Recognizing Transversal Distribution of Steel Strip Thickness</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>TANG, Cheng-long ; WANG, Shi-gang ; LIANG, Qin-hua ; XU, Wei</creator><creatorcontrib>TANG, Cheng-long ; WANG, Shi-gang ; LIANG, Qin-hua ; XU, Wei</creatorcontrib><description>Transversal distribution of the steel strip thickness in the entry section of the cold rolling mill seriously affects to the flatness and transversal thickness precision of the final products. Pattern clustering method is introduced into the steel rolling field and used in the patterns recognition of transversal distribution of the steel strip thickness. The well-known k-means clustering algorithm has the advantage of being easily completed, but still has some drawbacks. An improved k-means clustering algorithm is presented, and the main improvements include: (1) the initial clustering points are preselected according to the density queue of data objects; and (2) Mahalanobis distance is applied instead of Euclidean distance in the actual application. Compared to the patterns obtained from the common kmeans algorithm, the patterns identified by the improved algorithm show that the improved clustering algorithm is well suitable for the patterns' recognition of transversal distribution of steel strip thickness and it will be useful in online quality control system.</description><identifier>ISSN: 1006-706X</identifier><identifier>EISSN: 2210-3988</identifier><identifier>DOI: 10.1016/S1006-706X(10)60010-6</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Algorithms ; Applied and Technical Physics ; Clustering ; Density ; density queue ; Engineering ; improved k-means algorithm ; Iron and steel industry ; Machines ; Manufacturing ; Materials Engineering ; Materials Science ; Metallic Materials ; On-line systems ; Pattern recognition ; Physical Chemistry ; Processes ; Steels ; Strip steel ; transversal thickness distribution ; 厚度分布 ; 厚度精度 ; 带钢厚度 ; 最终产品 ; 横向分布 ; 特征识别 ; 聚类算法 ; 质量控制体系</subject><ispartof>Journal of iron and steel research, international, 2009-09, Vol.16 (5), p.50-55</ispartof><rights>2009 Central Iron and Steel Research Institute</rights><rights>China Iron and Steel Research Institute Group 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-ad8ed015889d7a586682ada6cce167a32308d924b91b703a3ff17851b3da47cb3</citedby><cites>FETCH-LOGICAL-c415t-ad8ed015889d7a586682ada6cce167a32308d924b91b703a3ff17851b3da47cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86787X/86787X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/S1006-706X(10)60010-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1006-706X(10)60010-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,41488,42557,45995,51319</link.rule.ids></links><search><creatorcontrib>TANG, Cheng-long</creatorcontrib><creatorcontrib>WANG, Shi-gang</creatorcontrib><creatorcontrib>LIANG, Qin-hua</creatorcontrib><creatorcontrib>XU, Wei</creatorcontrib><title>Improved Pattern Clustering Algorithm for Recognizing Transversal Distribution of Steel Strip Thickness</title><title>Journal of iron and steel research, international</title><addtitle>J. Iron Steel Res. Int</addtitle><addtitle>Journal of Iron and Steel Research</addtitle><description>Transversal distribution of the steel strip thickness in the entry section of the cold rolling mill seriously affects to the flatness and transversal thickness precision of the final products. Pattern clustering method is introduced into the steel rolling field and used in the patterns recognition of transversal distribution of the steel strip thickness. The well-known k-means clustering algorithm has the advantage of being easily completed, but still has some drawbacks. An improved k-means clustering algorithm is presented, and the main improvements include: (1) the initial clustering points are preselected according to the density queue of data objects; and (2) Mahalanobis distance is applied instead of Euclidean distance in the actual application. Compared to the patterns obtained from the common kmeans algorithm, the patterns identified by the improved algorithm show that the improved clustering algorithm is well suitable for the patterns' recognition of transversal distribution of steel strip thickness and it will be useful in online quality control system.</description><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Clustering</subject><subject>Density</subject><subject>density queue</subject><subject>Engineering</subject><subject>improved k-means algorithm</subject><subject>Iron and steel industry</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>On-line systems</subject><subject>Pattern recognition</subject><subject>Physical Chemistry</subject><subject>Processes</subject><subject>Steels</subject><subject>Strip steel</subject><subject>transversal thickness distribution</subject><subject>厚度分布</subject><subject>厚度精度</subject><subject>带钢厚度</subject><subject>最终产品</subject><subject>横向分布</subject><subject>特征识别</subject><subject>聚类算法</subject><subject>质量控制体系</subject><issn>1006-706X</issn><issn>2210-3988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkVFPHCEUhUlTk26sP6EJ8UX7MC0MMwzzZMyqrYmJpq6Jb4SBO7PoLKzAbNL-ehnX9FUe4AbOuXA-EPpGyQ9KKP95TwnhRUP44ykl3zkhlBT8E1qUZS5YK8RntPgv-YKOYnwi82g5K8UCDdebbfA7MPhOpQTB4eU4xVxYN-DzcfDBpvUG9z7gP6D94Oy_-WQVlIs7CFGN-MLGFGw3Jesd9j2-TwBjnoPd4tXa6mcHMX5FB70aIxy9r4fo4epytfxd3Nz-ul6e3xS6onUqlBFgCK2FaE2jasG5KJVRXGugvFGsZESYtqy6lnYNYYr1PW1ETTtmVNXojh2ik33fnOplgpjkxkYN46gc-ClKwauKtKUgWVnvlTr4GAP0chvsRoW_khI5o5VvaOXMbd56Qyt59vG9L25nSBDkk5-Cy6E-NJ7tjZDz72w2Rm3BaTA2gE7SePthh-P3J6-9G17y7bJT-rm3I0iW-Yg6_-orQ7CeQA</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>TANG, Cheng-long</creator><creator>WANG, Shi-gang</creator><creator>LIANG, Qin-hua</creator><creator>XU, Wei</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090901</creationdate><title>Improved Pattern Clustering Algorithm for Recognizing Transversal Distribution of Steel Strip Thickness</title><author>TANG, Cheng-long ; WANG, Shi-gang ; LIANG, Qin-hua ; XU, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-ad8ed015889d7a586682ada6cce167a32308d924b91b703a3ff17851b3da47cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Clustering</topic><topic>Density</topic><topic>density queue</topic><topic>Engineering</topic><topic>improved k-means algorithm</topic><topic>Iron and steel industry</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>On-line systems</topic><topic>Pattern recognition</topic><topic>Physical Chemistry</topic><topic>Processes</topic><topic>Steels</topic><topic>Strip steel</topic><topic>transversal thickness distribution</topic><topic>厚度分布</topic><topic>厚度精度</topic><topic>带钢厚度</topic><topic>最终产品</topic><topic>横向分布</topic><topic>特征识别</topic><topic>聚类算法</topic><topic>质量控制体系</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TANG, Cheng-long</creatorcontrib><creatorcontrib>WANG, Shi-gang</creatorcontrib><creatorcontrib>LIANG, Qin-hua</creatorcontrib><creatorcontrib>XU, Wei</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of iron and steel research, international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TANG, Cheng-long</au><au>WANG, Shi-gang</au><au>LIANG, Qin-hua</au><au>XU, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Pattern Clustering Algorithm for Recognizing Transversal Distribution of Steel Strip Thickness</atitle><jtitle>Journal of iron and steel research, international</jtitle><stitle>J. Iron Steel Res. Int</stitle><addtitle>Journal of Iron and Steel Research</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>16</volume><issue>5</issue><spage>50</spage><epage>55</epage><pages>50-55</pages><issn>1006-706X</issn><eissn>2210-3988</eissn><abstract>Transversal distribution of the steel strip thickness in the entry section of the cold rolling mill seriously affects to the flatness and transversal thickness precision of the final products. Pattern clustering method is introduced into the steel rolling field and used in the patterns recognition of transversal distribution of the steel strip thickness. The well-known k-means clustering algorithm has the advantage of being easily completed, but still has some drawbacks. An improved k-means clustering algorithm is presented, and the main improvements include: (1) the initial clustering points are preselected according to the density queue of data objects; and (2) Mahalanobis distance is applied instead of Euclidean distance in the actual application. Compared to the patterns obtained from the common kmeans algorithm, the patterns identified by the improved algorithm show that the improved clustering algorithm is well suitable for the patterns' recognition of transversal distribution of steel strip thickness and it will be useful in online quality control system.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1006-706X(10)60010-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1006-706X
ispartof Journal of iron and steel research, international, 2009-09, Vol.16 (5), p.50-55
issn 1006-706X
2210-3988
language eng
recordid cdi_proquest_miscellaneous_864409280
source ScienceDirect Journals (5 years ago - present); Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Algorithms
Applied and Technical Physics
Clustering
Density
density queue
Engineering
improved k-means algorithm
Iron and steel industry
Machines
Manufacturing
Materials Engineering
Materials Science
Metallic Materials
On-line systems
Pattern recognition
Physical Chemistry
Processes
Steels
Strip steel
transversal thickness distribution
厚度分布
厚度精度
带钢厚度
最终产品
横向分布
特征识别
聚类算法
质量控制体系
title Improved Pattern Clustering Algorithm for Recognizing Transversal Distribution of Steel Strip Thickness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Pattern%20Clustering%20Algorithm%20for%20Recognizing%20Transversal%20Distribution%20of%20Steel%20Strip%20Thickness&rft.jtitle=Journal%20of%20iron%20and%20steel%20research,%20international&rft.au=TANG,%20Cheng-long&rft.date=2009-09-01&rft.volume=16&rft.issue=5&rft.spage=50&rft.epage=55&rft.pages=50-55&rft.issn=1006-706X&rft.eissn=2210-3988&rft_id=info:doi/10.1016/S1006-706X(10)60010-6&rft_dat=%3Cproquest_cross%3E864409280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864409280&rft_id=info:pmid/&rft_cqvip_id=31678596&rft_els_id=S1006706X10600106&rfr_iscdi=true