Thermo-mechanical life prediction for material lifetime improvement of an internal cooling system in a combustion liner

This paper is concerned with heat transfer analysis and life prediction in the after shell section of a gas turbine combustion liner with internal cooling passage. The method in the present study is the process to design cooling systems which enhance the material lifetime as well as the cooling perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2011-02, Vol.36 (2), p.942-949
Hauptverfasser: Kim, Kyung Min, Jeon, Yun Heung, Yun, Namgeon, Lee, Dong Hyun, Cho, Hyung Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 949
container_issue 2
container_start_page 942
container_title Energy (Oxford)
container_volume 36
creator Kim, Kyung Min
Jeon, Yun Heung
Yun, Namgeon
Lee, Dong Hyun
Cho, Hyung Hee
description This paper is concerned with heat transfer analysis and life prediction in the after shell section of a gas turbine combustion liner with internal cooling passage. The method in the present study is the process to design cooling systems which enhance the material lifetime as well as the cooling performance. Using this method, we found the major causes of lifetime-affecting thermal damage induced by heat transfer distributions in the internal cooling system of the after shell section. From startup to shutdown, high thermal deformation occurred between the hot and coolant side walls in the welding region, the nearby cooling hole, and above the divider of the C-channel. Three regions were therefore very weak in relation to the thermal cycle. Moreover, these locations were in close agreement with the locations of thermal cracks in an actual gas turbine combustor currently in service. ► We investigate heat transfer and life prediction in after shell section of combustion liner. ► We find major causes of lifetime-affecting thermal damage induced by heat transfer. ► Using lifetime prediction, we find weak regions in relation to the thermal cycle. ► The locations are in agreement with locations of thermal cracks in an actual turbine.
doi_str_mv 10.1016/j.energy.2010.12.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864407352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544210007061</els_id><sourcerecordid>864407352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-c392ca96ddc62082dc7b91aced6b4594375bfe2d292588fa0d5a2b336ff7d4933</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhb1IoWmaf1CINqXdeKqXZWtTKKEvCHSRZC1k-WqiwZKmkidl_n3v1EOXWQnO_e7R5ZymecfohlGmPu02kKBsjxtOTxLfoHjRXFKhaNtJyV83b2rdUUq7QevL5s_DE5SY2wjuyabg7Ezm4IHsC0zBLSEn4nMh0S5Qwnm4hAgkxH3JzxAhLSR7YhMJCZmEjMt5DmlL6rEuEFEnFrU4Huo_P5xBedu88naucH1-r5rHb18fbn-0d7--_7z9ctc6ybuldUJzZ7WaJqc4Hfjk-lEz62BSo-y0FH03euAT17wbBm_p1Fk-CqG87yephbhqPqy-eO3vA9TFxFAdzLNNkA_VDEpK2ouOI_nxRZKpnknZqYEhKlfUlVxrAW_2JURbjoZRc2rB7Mzagjm1YBg3KOLa-_MPtmLQvtjkQv2_y8WgaE81cjcr5202dluQebxHI4WtKd2LAYnPKwEY3XOAYqoLkDCWUMAtZsrh5VP-AufUrOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671445681</pqid></control><display><type>article</type><title>Thermo-mechanical life prediction for material lifetime improvement of an internal cooling system in a combustion liner</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Kyung Min ; Jeon, Yun Heung ; Yun, Namgeon ; Lee, Dong Hyun ; Cho, Hyung Hee</creator><creatorcontrib>Kim, Kyung Min ; Jeon, Yun Heung ; Yun, Namgeon ; Lee, Dong Hyun ; Cho, Hyung Hee</creatorcontrib><description>This paper is concerned with heat transfer analysis and life prediction in the after shell section of a gas turbine combustion liner with internal cooling passage. The method in the present study is the process to design cooling systems which enhance the material lifetime as well as the cooling performance. Using this method, we found the major causes of lifetime-affecting thermal damage induced by heat transfer distributions in the internal cooling system of the after shell section. From startup to shutdown, high thermal deformation occurred between the hot and coolant side walls in the welding region, the nearby cooling hole, and above the divider of the C-channel. Three regions were therefore very weak in relation to the thermal cycle. Moreover, these locations were in close agreement with the locations of thermal cracks in an actual gas turbine combustor currently in service. ► We investigate heat transfer and life prediction in after shell section of combustion liner. ► We find major causes of lifetime-affecting thermal damage induced by heat transfer. ► Using lifetime prediction, we find weak regions in relation to the thermal cycle. ► The locations are in agreement with locations of thermal cracks in an actual turbine.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2010.12.016</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Combustion ; Cooling ; Cooling systems ; deformation ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Finite elements ; Gas turbines ; Heat transfer ; Life prediction ; Liners ; prediction ; process design ; Shells ; Thermal stress ; Thermomechanical process</subject><ispartof>Energy (Oxford), 2011-02, Vol.36 (2), p.942-949</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-c392ca96ddc62082dc7b91aced6b4594375bfe2d292588fa0d5a2b336ff7d4933</citedby><cites>FETCH-LOGICAL-c425t-c392ca96ddc62082dc7b91aced6b4594375bfe2d292588fa0d5a2b336ff7d4933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2010.12.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23860709$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kyung Min</creatorcontrib><creatorcontrib>Jeon, Yun Heung</creatorcontrib><creatorcontrib>Yun, Namgeon</creatorcontrib><creatorcontrib>Lee, Dong Hyun</creatorcontrib><creatorcontrib>Cho, Hyung Hee</creatorcontrib><title>Thermo-mechanical life prediction for material lifetime improvement of an internal cooling system in a combustion liner</title><title>Energy (Oxford)</title><description>This paper is concerned with heat transfer analysis and life prediction in the after shell section of a gas turbine combustion liner with internal cooling passage. The method in the present study is the process to design cooling systems which enhance the material lifetime as well as the cooling performance. Using this method, we found the major causes of lifetime-affecting thermal damage induced by heat transfer distributions in the internal cooling system of the after shell section. From startup to shutdown, high thermal deformation occurred between the hot and coolant side walls in the welding region, the nearby cooling hole, and above the divider of the C-channel. Three regions were therefore very weak in relation to the thermal cycle. Moreover, these locations were in close agreement with the locations of thermal cracks in an actual gas turbine combustor currently in service. ► We investigate heat transfer and life prediction in after shell section of combustion liner. ► We find major causes of lifetime-affecting thermal damage induced by heat transfer. ► Using lifetime prediction, we find weak regions in relation to the thermal cycle. ► The locations are in agreement with locations of thermal cracks in an actual turbine.</description><subject>Applied sciences</subject><subject>Combustion</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>deformation</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Finite elements</subject><subject>Gas turbines</subject><subject>Heat transfer</subject><subject>Life prediction</subject><subject>Liners</subject><subject>prediction</subject><subject>process design</subject><subject>Shells</subject><subject>Thermal stress</subject><subject>Thermomechanical process</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3DAUhb1IoWmaf1CINqXdeKqXZWtTKKEvCHSRZC1k-WqiwZKmkidl_n3v1EOXWQnO_e7R5ZymecfohlGmPu02kKBsjxtOTxLfoHjRXFKhaNtJyV83b2rdUUq7QevL5s_DE5SY2wjuyabg7Ezm4IHsC0zBLSEn4nMh0S5Qwnm4hAgkxH3JzxAhLSR7YhMJCZmEjMt5DmlL6rEuEFEnFrU4Huo_P5xBedu88naucH1-r5rHb18fbn-0d7--_7z9ctc6ybuldUJzZ7WaJqc4Hfjk-lEz62BSo-y0FH03euAT17wbBm_p1Fk-CqG87yephbhqPqy-eO3vA9TFxFAdzLNNkA_VDEpK2ouOI_nxRZKpnknZqYEhKlfUlVxrAW_2JURbjoZRc2rB7Mzagjm1YBg3KOLa-_MPtmLQvtjkQv2_y8WgaE81cjcr5202dluQebxHI4WtKd2LAYnPKwEY3XOAYqoLkDCWUMAtZsrh5VP-AufUrOY</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Kim, Kyung Min</creator><creator>Jeon, Yun Heung</creator><creator>Yun, Namgeon</creator><creator>Lee, Dong Hyun</creator><creator>Cho, Hyung Hee</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20110201</creationdate><title>Thermo-mechanical life prediction for material lifetime improvement of an internal cooling system in a combustion liner</title><author>Kim, Kyung Min ; Jeon, Yun Heung ; Yun, Namgeon ; Lee, Dong Hyun ; Cho, Hyung Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-c392ca96ddc62082dc7b91aced6b4594375bfe2d292588fa0d5a2b336ff7d4933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Combustion</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>deformation</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Finite elements</topic><topic>Gas turbines</topic><topic>Heat transfer</topic><topic>Life prediction</topic><topic>Liners</topic><topic>prediction</topic><topic>process design</topic><topic>Shells</topic><topic>Thermal stress</topic><topic>Thermomechanical process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyung Min</creatorcontrib><creatorcontrib>Jeon, Yun Heung</creatorcontrib><creatorcontrib>Yun, Namgeon</creatorcontrib><creatorcontrib>Lee, Dong Hyun</creatorcontrib><creatorcontrib>Cho, Hyung Hee</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyung Min</au><au>Jeon, Yun Heung</au><au>Yun, Namgeon</au><au>Lee, Dong Hyun</au><au>Cho, Hyung Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-mechanical life prediction for material lifetime improvement of an internal cooling system in a combustion liner</atitle><jtitle>Energy (Oxford)</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>36</volume><issue>2</issue><spage>942</spage><epage>949</epage><pages>942-949</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>This paper is concerned with heat transfer analysis and life prediction in the after shell section of a gas turbine combustion liner with internal cooling passage. The method in the present study is the process to design cooling systems which enhance the material lifetime as well as the cooling performance. Using this method, we found the major causes of lifetime-affecting thermal damage induced by heat transfer distributions in the internal cooling system of the after shell section. From startup to shutdown, high thermal deformation occurred between the hot and coolant side walls in the welding region, the nearby cooling hole, and above the divider of the C-channel. Three regions were therefore very weak in relation to the thermal cycle. Moreover, these locations were in close agreement with the locations of thermal cracks in an actual gas turbine combustor currently in service. ► We investigate heat transfer and life prediction in after shell section of combustion liner. ► We find major causes of lifetime-affecting thermal damage induced by heat transfer. ► Using lifetime prediction, we find weak regions in relation to the thermal cycle. ► The locations are in agreement with locations of thermal cracks in an actual turbine.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2010.12.016</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2011-02, Vol.36 (2), p.942-949
issn 0360-5442
language eng
recordid cdi_proquest_miscellaneous_864407352
source Elsevier ScienceDirect Journals
subjects Applied sciences
Combustion
Cooling
Cooling systems
deformation
Energy
Energy. Thermal use of fuels
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Finite elements
Gas turbines
Heat transfer
Life prediction
Liners
prediction
process design
Shells
Thermal stress
Thermomechanical process
title Thermo-mechanical life prediction for material lifetime improvement of an internal cooling system in a combustion liner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-mechanical%20life%20prediction%20for%20material%20lifetime%20improvement%20of%20an%20internal%20cooling%20system%20in%20a%20combustion%20liner&rft.jtitle=Energy%20(Oxford)&rft.au=Kim,%20Kyung%20Min&rft.date=2011-02-01&rft.volume=36&rft.issue=2&rft.spage=942&rft.epage=949&rft.pages=942-949&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2010.12.016&rft_dat=%3Cproquest_cross%3E864407352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671445681&rft_id=info:pmid/&rft_els_id=S0360544210007061&rfr_iscdi=true