Stirring by squirmers

We analyse a simple ‘Stokesian squirmer’ model for the enhanced mixing due to swimming micro-organisms. The model is based on a calculation of Thiffeault & Childress (Phys. Lett. A, vol. 374, 2010, p. 3487), where fluid particle displacements due to inviscid swimmers are added to produce an effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2011-02, Vol.669, p.167-177
Hauptverfasser: LIN, ZHI, THIFFEAULT, JEAN-LUC, CHILDRESS, STEPHEN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue
container_start_page 167
container_title Journal of fluid mechanics
container_volume 669
creator LIN, ZHI
THIFFEAULT, JEAN-LUC
CHILDRESS, STEPHEN
description We analyse a simple ‘Stokesian squirmer’ model for the enhanced mixing due to swimming micro-organisms. The model is based on a calculation of Thiffeault & Childress (Phys. Lett. A, vol. 374, 2010, p. 3487), where fluid particle displacements due to inviscid swimmers are added to produce an effective diffusivity. Here we show that, for the viscous case, the swimmers cannot be assumed to swim an infinite distance, even though their total mass displacement is finite. Instead, the largest contributions to particle displacement, and hence to mixing, arise from random changes of direction of swimming and are dominated by the far-field stresslet term in our simple model. We validate the results by numerical simulation. We also calculate non-zero Reynolds number corrections to the effective diffusivity. Finally, we show that displacements due to randomly swimming squirmers exhibit probability distribution functions with exponential tails and a short-time superdiffusive regime, as found previously by several authors. In our case, the exponential tails are due to ‘sticking’ near the stagnation points on the squirmer's surface.
doi_str_mv 10.1017/S002211201000563X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864404262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S002211201000563X</cupid><sourcerecordid>864404262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-f1e513dbd47af59433b4cfbe4c6289518e29b8a9945dac6527f32be650acf28c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKtLF-6KILoZvXnOZCnFFxRcVMFdSDJJmTKPNuks-u_N0KKg6OouzncO51yELjDcYsD53RyAEIwJYADggn4coBFmQma5YPwQjQY5G_RjdBLjEgBTkPkInc83VQhVu5iY7SSu-yo0LsRTdOR1Hd3Z_o7R--PD2_Q5m70-vUzvZ5nlhG8yjx3HtDQly7XnklFqmPXGMStIITkuHJGm0FIyXmorOMk9JcYJDtp6Ulg6Rte73FXo1r2LG9VU0bq61q3r-qgKwRgwIkgib_4lsWBpv6RyQC9_oMuuD23aoYrUKZeS0gThHWRDF2NwXq1C1eiwVRjU8FH166PJc7UP1tHq2gfd2ip-GQkdJgMkju6zdWNCVS7cd4O_0z8BGw-BoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851879933</pqid></control><display><type>article</type><title>Stirring by squirmers</title><source>Cambridge University Press Journals Complete</source><creator>LIN, ZHI ; THIFFEAULT, JEAN-LUC ; CHILDRESS, STEPHEN</creator><creatorcontrib>LIN, ZHI ; THIFFEAULT, JEAN-LUC ; CHILDRESS, STEPHEN</creatorcontrib><description>We analyse a simple ‘Stokesian squirmer’ model for the enhanced mixing due to swimming micro-organisms. The model is based on a calculation of Thiffeault &amp; Childress (Phys. Lett. A, vol. 374, 2010, p. 3487), where fluid particle displacements due to inviscid swimmers are added to produce an effective diffusivity. Here we show that, for the viscous case, the swimmers cannot be assumed to swim an infinite distance, even though their total mass displacement is finite. Instead, the largest contributions to particle displacement, and hence to mixing, arise from random changes of direction of swimming and are dominated by the far-field stresslet term in our simple model. We validate the results by numerical simulation. We also calculate non-zero Reynolds number corrections to the effective diffusivity. Finally, we show that displacements due to randomly swimming squirmers exhibit probability distribution functions with exponential tails and a short-time superdiffusive regime, as found previously by several authors. In our case, the exponential tails are due to ‘sticking’ near the stagnation points on the squirmer's surface.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S002211201000563X</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aquatic life ; Biological and medical sciences ; Biomechanics. Biorheology ; Computational fluid dynamics ; Diffusivity ; Fluid flow ; Fluid mechanics ; Fluids ; Fundamental and applied biological sciences. Psychology ; Mathematical analysis ; Mathematical models ; Microorganisms ; Probability distribution ; Reynolds number ; Stagnation point ; Swimming ; Tissues, organs and organisms biophysics</subject><ispartof>Journal of fluid mechanics, 2011-02, Vol.669, p.167-177</ispartof><rights>Copyright © Cambridge University Press 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-f1e513dbd47af59433b4cfbe4c6289518e29b8a9945dac6527f32be650acf28c3</citedby><cites>FETCH-LOGICAL-c525t-f1e513dbd47af59433b4cfbe4c6289518e29b8a9945dac6527f32be650acf28c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211201000563X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23951800$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LIN, ZHI</creatorcontrib><creatorcontrib>THIFFEAULT, JEAN-LUC</creatorcontrib><creatorcontrib>CHILDRESS, STEPHEN</creatorcontrib><title>Stirring by squirmers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We analyse a simple ‘Stokesian squirmer’ model for the enhanced mixing due to swimming micro-organisms. The model is based on a calculation of Thiffeault &amp; Childress (Phys. Lett. A, vol. 374, 2010, p. 3487), where fluid particle displacements due to inviscid swimmers are added to produce an effective diffusivity. Here we show that, for the viscous case, the swimmers cannot be assumed to swim an infinite distance, even though their total mass displacement is finite. Instead, the largest contributions to particle displacement, and hence to mixing, arise from random changes of direction of swimming and are dominated by the far-field stresslet term in our simple model. We validate the results by numerical simulation. We also calculate non-zero Reynolds number corrections to the effective diffusivity. Finally, we show that displacements due to randomly swimming squirmers exhibit probability distribution functions with exponential tails and a short-time superdiffusive regime, as found previously by several authors. In our case, the exponential tails are due to ‘sticking’ near the stagnation points on the squirmer's surface.</description><subject>Aquatic life</subject><subject>Biological and medical sciences</subject><subject>Biomechanics. Biorheology</subject><subject>Computational fluid dynamics</subject><subject>Diffusivity</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microorganisms</subject><subject>Probability distribution</subject><subject>Reynolds number</subject><subject>Stagnation point</subject><subject>Swimming</subject><subject>Tissues, organs and organisms biophysics</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKtLF-6KILoZvXnOZCnFFxRcVMFdSDJJmTKPNuks-u_N0KKg6OouzncO51yELjDcYsD53RyAEIwJYADggn4coBFmQma5YPwQjQY5G_RjdBLjEgBTkPkInc83VQhVu5iY7SSu-yo0LsRTdOR1Hd3Z_o7R--PD2_Q5m70-vUzvZ5nlhG8yjx3HtDQly7XnklFqmPXGMStIITkuHJGm0FIyXmorOMk9JcYJDtp6Ulg6Rte73FXo1r2LG9VU0bq61q3r-qgKwRgwIkgib_4lsWBpv6RyQC9_oMuuD23aoYrUKZeS0gThHWRDF2NwXq1C1eiwVRjU8FH166PJc7UP1tHq2gfd2ip-GQkdJgMkju6zdWNCVS7cd4O_0z8BGw-BoQ</recordid><startdate>20110225</startdate><enddate>20110225</enddate><creator>LIN, ZHI</creator><creator>THIFFEAULT, JEAN-LUC</creator><creator>CHILDRESS, STEPHEN</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20110225</creationdate><title>Stirring by squirmers</title><author>LIN, ZHI ; THIFFEAULT, JEAN-LUC ; CHILDRESS, STEPHEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-f1e513dbd47af59433b4cfbe4c6289518e29b8a9945dac6527f32be650acf28c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aquatic life</topic><topic>Biological and medical sciences</topic><topic>Biomechanics. Biorheology</topic><topic>Computational fluid dynamics</topic><topic>Diffusivity</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microorganisms</topic><topic>Probability distribution</topic><topic>Reynolds number</topic><topic>Stagnation point</topic><topic>Swimming</topic><topic>Tissues, organs and organisms biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIN, ZHI</creatorcontrib><creatorcontrib>THIFFEAULT, JEAN-LUC</creatorcontrib><creatorcontrib>CHILDRESS, STEPHEN</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIN, ZHI</au><au>THIFFEAULT, JEAN-LUC</au><au>CHILDRESS, STEPHEN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stirring by squirmers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2011-02-25</date><risdate>2011</risdate><volume>669</volume><spage>167</spage><epage>177</epage><pages>167-177</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We analyse a simple ‘Stokesian squirmer’ model for the enhanced mixing due to swimming micro-organisms. The model is based on a calculation of Thiffeault &amp; Childress (Phys. Lett. A, vol. 374, 2010, p. 3487), where fluid particle displacements due to inviscid swimmers are added to produce an effective diffusivity. Here we show that, for the viscous case, the swimmers cannot be assumed to swim an infinite distance, even though their total mass displacement is finite. Instead, the largest contributions to particle displacement, and hence to mixing, arise from random changes of direction of swimming and are dominated by the far-field stresslet term in our simple model. We validate the results by numerical simulation. We also calculate non-zero Reynolds number corrections to the effective diffusivity. Finally, we show that displacements due to randomly swimming squirmers exhibit probability distribution functions with exponential tails and a short-time superdiffusive regime, as found previously by several authors. In our case, the exponential tails are due to ‘sticking’ near the stagnation points on the squirmer's surface.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S002211201000563X</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2011-02, Vol.669, p.167-177
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_864404262
source Cambridge University Press Journals Complete
subjects Aquatic life
Biological and medical sciences
Biomechanics. Biorheology
Computational fluid dynamics
Diffusivity
Fluid flow
Fluid mechanics
Fluids
Fundamental and applied biological sciences. Psychology
Mathematical analysis
Mathematical models
Microorganisms
Probability distribution
Reynolds number
Stagnation point
Swimming
Tissues, organs and organisms biophysics
title Stirring by squirmers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stirring%20by%20squirmers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=LIN,%20ZHI&rft.date=2011-02-25&rft.volume=669&rft.spage=167&rft.epage=177&rft.pages=167-177&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S002211201000563X&rft_dat=%3Cproquest_cross%3E864404262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=851879933&rft_id=info:pmid/&rft_cupid=10_1017_S002211201000563X&rfr_iscdi=true