Stirring by squirmers
We analyse a simple ‘Stokesian squirmer’ model for the enhanced mixing due to swimming micro-organisms. The model is based on a calculation of Thiffeault & Childress (Phys. Lett. A, vol. 374, 2010, p. 3487), where fluid particle displacements due to inviscid swimmers are added to produce an effe...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2011-02, Vol.669, p.167-177 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | |
container_start_page | 167 |
container_title | Journal of fluid mechanics |
container_volume | 669 |
creator | LIN, ZHI THIFFEAULT, JEAN-LUC CHILDRESS, STEPHEN |
description | We analyse a simple ‘Stokesian squirmer’ model for the enhanced mixing due to swimming micro-organisms. The model is based on a calculation of Thiffeault & Childress (Phys. Lett. A, vol. 374, 2010, p. 3487), where fluid particle displacements due to inviscid swimmers are added to produce an effective diffusivity. Here we show that, for the viscous case, the swimmers cannot be assumed to swim an infinite distance, even though their total mass displacement is finite. Instead, the largest contributions to particle displacement, and hence to mixing, arise from random changes of direction of swimming and are dominated by the far-field stresslet term in our simple model. We validate the results by numerical simulation. We also calculate non-zero Reynolds number corrections to the effective diffusivity. Finally, we show that displacements due to randomly swimming squirmers exhibit probability distribution functions with exponential tails and a short-time superdiffusive regime, as found previously by several authors. In our case, the exponential tails are due to ‘sticking’ near the stagnation points on the squirmer's surface. |
doi_str_mv | 10.1017/S002211201000563X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864404262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S002211201000563X</cupid><sourcerecordid>864404262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-f1e513dbd47af59433b4cfbe4c6289518e29b8a9945dac6527f32be650acf28c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKtLF-6KILoZvXnOZCnFFxRcVMFdSDJJmTKPNuks-u_N0KKg6OouzncO51yELjDcYsD53RyAEIwJYADggn4coBFmQma5YPwQjQY5G_RjdBLjEgBTkPkInc83VQhVu5iY7SSu-yo0LsRTdOR1Hd3Z_o7R--PD2_Q5m70-vUzvZ5nlhG8yjx3HtDQly7XnklFqmPXGMStIITkuHJGm0FIyXmorOMk9JcYJDtp6Ulg6Rte73FXo1r2LG9VU0bq61q3r-qgKwRgwIkgib_4lsWBpv6RyQC9_oMuuD23aoYrUKZeS0gThHWRDF2NwXq1C1eiwVRjU8FH166PJc7UP1tHq2gfd2ip-GQkdJgMkju6zdWNCVS7cd4O_0z8BGw-BoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851879933</pqid></control><display><type>article</type><title>Stirring by squirmers</title><source>Cambridge University Press Journals Complete</source><creator>LIN, ZHI ; THIFFEAULT, JEAN-LUC ; CHILDRESS, STEPHEN</creator><creatorcontrib>LIN, ZHI ; THIFFEAULT, JEAN-LUC ; CHILDRESS, STEPHEN</creatorcontrib><description>We analyse a simple ‘Stokesian squirmer’ model for the enhanced mixing due to swimming micro-organisms. The model is based on a calculation of Thiffeault & Childress (Phys. Lett. A, vol. 374, 2010, p. 3487), where fluid particle displacements due to inviscid swimmers are added to produce an effective diffusivity. Here we show that, for the viscous case, the swimmers cannot be assumed to swim an infinite distance, even though their total mass displacement is finite. Instead, the largest contributions to particle displacement, and hence to mixing, arise from random changes of direction of swimming and are dominated by the far-field stresslet term in our simple model. We validate the results by numerical simulation. We also calculate non-zero Reynolds number corrections to the effective diffusivity. Finally, we show that displacements due to randomly swimming squirmers exhibit probability distribution functions with exponential tails and a short-time superdiffusive regime, as found previously by several authors. In our case, the exponential tails are due to ‘sticking’ near the stagnation points on the squirmer's surface.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S002211201000563X</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aquatic life ; Biological and medical sciences ; Biomechanics. Biorheology ; Computational fluid dynamics ; Diffusivity ; Fluid flow ; Fluid mechanics ; Fluids ; Fundamental and applied biological sciences. Psychology ; Mathematical analysis ; Mathematical models ; Microorganisms ; Probability distribution ; Reynolds number ; Stagnation point ; Swimming ; Tissues, organs and organisms biophysics</subject><ispartof>Journal of fluid mechanics, 2011-02, Vol.669, p.167-177</ispartof><rights>Copyright © Cambridge University Press 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-f1e513dbd47af59433b4cfbe4c6289518e29b8a9945dac6527f32be650acf28c3</citedby><cites>FETCH-LOGICAL-c525t-f1e513dbd47af59433b4cfbe4c6289518e29b8a9945dac6527f32be650acf28c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211201000563X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23951800$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LIN, ZHI</creatorcontrib><creatorcontrib>THIFFEAULT, JEAN-LUC</creatorcontrib><creatorcontrib>CHILDRESS, STEPHEN</creatorcontrib><title>Stirring by squirmers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We analyse a simple ‘Stokesian squirmer’ model for the enhanced mixing due to swimming micro-organisms. The model is based on a calculation of Thiffeault & Childress (Phys. Lett. A, vol. 374, 2010, p. 3487), where fluid particle displacements due to inviscid swimmers are added to produce an effective diffusivity. Here we show that, for the viscous case, the swimmers cannot be assumed to swim an infinite distance, even though their total mass displacement is finite. Instead, the largest contributions to particle displacement, and hence to mixing, arise from random changes of direction of swimming and are dominated by the far-field stresslet term in our simple model. We validate the results by numerical simulation. We also calculate non-zero Reynolds number corrections to the effective diffusivity. Finally, we show that displacements due to randomly swimming squirmers exhibit probability distribution functions with exponential tails and a short-time superdiffusive regime, as found previously by several authors. In our case, the exponential tails are due to ‘sticking’ near the stagnation points on the squirmer's surface.</description><subject>Aquatic life</subject><subject>Biological and medical sciences</subject><subject>Biomechanics. Biorheology</subject><subject>Computational fluid dynamics</subject><subject>Diffusivity</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microorganisms</subject><subject>Probability distribution</subject><subject>Reynolds number</subject><subject>Stagnation point</subject><subject>Swimming</subject><subject>Tissues, organs and organisms biophysics</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKtLF-6KILoZvXnOZCnFFxRcVMFdSDJJmTKPNuks-u_N0KKg6OouzncO51yELjDcYsD53RyAEIwJYADggn4coBFmQma5YPwQjQY5G_RjdBLjEgBTkPkInc83VQhVu5iY7SSu-yo0LsRTdOR1Hd3Z_o7R--PD2_Q5m70-vUzvZ5nlhG8yjx3HtDQly7XnklFqmPXGMStIITkuHJGm0FIyXmorOMk9JcYJDtp6Ulg6Rte73FXo1r2LG9VU0bq61q3r-qgKwRgwIkgib_4lsWBpv6RyQC9_oMuuD23aoYrUKZeS0gThHWRDF2NwXq1C1eiwVRjU8FH166PJc7UP1tHq2gfd2ip-GQkdJgMkju6zdWNCVS7cd4O_0z8BGw-BoQ</recordid><startdate>20110225</startdate><enddate>20110225</enddate><creator>LIN, ZHI</creator><creator>THIFFEAULT, JEAN-LUC</creator><creator>CHILDRESS, STEPHEN</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20110225</creationdate><title>Stirring by squirmers</title><author>LIN, ZHI ; THIFFEAULT, JEAN-LUC ; CHILDRESS, STEPHEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-f1e513dbd47af59433b4cfbe4c6289518e29b8a9945dac6527f32be650acf28c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aquatic life</topic><topic>Biological and medical sciences</topic><topic>Biomechanics. Biorheology</topic><topic>Computational fluid dynamics</topic><topic>Diffusivity</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microorganisms</topic><topic>Probability distribution</topic><topic>Reynolds number</topic><topic>Stagnation point</topic><topic>Swimming</topic><topic>Tissues, organs and organisms biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIN, ZHI</creatorcontrib><creatorcontrib>THIFFEAULT, JEAN-LUC</creatorcontrib><creatorcontrib>CHILDRESS, STEPHEN</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIN, ZHI</au><au>THIFFEAULT, JEAN-LUC</au><au>CHILDRESS, STEPHEN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stirring by squirmers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2011-02-25</date><risdate>2011</risdate><volume>669</volume><spage>167</spage><epage>177</epage><pages>167-177</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We analyse a simple ‘Stokesian squirmer’ model for the enhanced mixing due to swimming micro-organisms. The model is based on a calculation of Thiffeault & Childress (Phys. Lett. A, vol. 374, 2010, p. 3487), where fluid particle displacements due to inviscid swimmers are added to produce an effective diffusivity. Here we show that, for the viscous case, the swimmers cannot be assumed to swim an infinite distance, even though their total mass displacement is finite. Instead, the largest contributions to particle displacement, and hence to mixing, arise from random changes of direction of swimming and are dominated by the far-field stresslet term in our simple model. We validate the results by numerical simulation. We also calculate non-zero Reynolds number corrections to the effective diffusivity. Finally, we show that displacements due to randomly swimming squirmers exhibit probability distribution functions with exponential tails and a short-time superdiffusive regime, as found previously by several authors. In our case, the exponential tails are due to ‘sticking’ near the stagnation points on the squirmer's surface.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S002211201000563X</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2011-02, Vol.669, p.167-177 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_864404262 |
source | Cambridge University Press Journals Complete |
subjects | Aquatic life Biological and medical sciences Biomechanics. Biorheology Computational fluid dynamics Diffusivity Fluid flow Fluid mechanics Fluids Fundamental and applied biological sciences. Psychology Mathematical analysis Mathematical models Microorganisms Probability distribution Reynolds number Stagnation point Swimming Tissues, organs and organisms biophysics |
title | Stirring by squirmers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stirring%20by%20squirmers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=LIN,%20ZHI&rft.date=2011-02-25&rft.volume=669&rft.spage=167&rft.epage=177&rft.pages=167-177&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S002211201000563X&rft_dat=%3Cproquest_cross%3E864404262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=851879933&rft_id=info:pmid/&rft_cupid=10_1017_S002211201000563X&rfr_iscdi=true |