Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling
The gas turbine power output and efficiency decrease with increasing ambient temperature. With compressor inlet air cooling, the air density and mass flow rate as well as the gas turbine net power output increase. The inlet cooling techniques include vapor or absorption refrigeration systems, evapor...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2011-02, Vol.36 (2), p.1057-1067 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1067 |
---|---|
container_issue | 2 |
container_start_page | 1057 |
container_title | Energy (Oxford) |
container_volume | 36 |
creator | Sanaye, Sepehr Fardad, Abbasali Mostakhdemi, Masoud |
description | The gas turbine power output and efficiency decrease with increasing ambient temperature. With compressor inlet air cooling, the air density and mass flow rate as well as the gas turbine net power output increase. The inlet cooling techniques include vapor or absorption refrigeration systems, evaporative cooling systems and thermal energy storage (TES) systems. In this paper the thermoeconomic analysis of ice (latent) thermal energy storage system for gas turbine inlet cooling application was performed. The optimum values of system design parameters were obtained using genetic algorithm optimization technique. The objective function included the capital and operational costs of the gas turbine, vapor compression refrigeration system, without (objective function I) and with (objective function II) corresponding cost due to the system exergy destruction. For gas turbines with net power output in the range of 25–100
MW, the inlet air cooling using a TES system increased the power output in the range of 3.9–25.7%, increased the efficiency in the range 2.1–5.2%, while increased the payback period from about 4 to 7.7 years.
► A TES system for a gas turbine inlet air cooling was modeled which included all sub-systems and equipment. ► The optimal design of TES system with a new objective function and a new list of design parameters was carried out by using thermoeconomic analysis. ► The effect of gas turbine nominal power output on optimal design parameters was investigated. ► The sensitivity analysis of change in design parameters with fuel unit cost and capital cost was performed. |
doi_str_mv | 10.1016/j.energy.2010.12.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864403738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544210006924</els_id><sourcerecordid>864403738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-31391ac6c3bbaa72987257f83757a5ede40116610d053a9cc8796b6903711b1d3</originalsourceid><addsrcrecordid>eNp90U1r3DAQBmAfWmia5h8EqktpL7vVSLZkXwol9AsCPSS55CLG8tjVYktbSVvY_vrKOPSYk2B4Zka8U1XXwPfAQX087MlTnM57wdeS2HMuXlQXXCq-a-pavKpep3TgnDdt111Uj_e_KC6BbPBhcZaFY3aL-4vZBc_CyNAzZ4nlVeHMUg4RJ2LpnDItbAyRTZhYPsXeeWLOz5SZDWF2fnpTvRxxTnT19F5WD1-_3N98393-_Pbj5vPtztYd5J0E2QFaZWXfI2rRtVo0emylbjQ2NFDNAZQCPvBGYmdtqzvVq45LDdDDIC-r99vcYwy_T5SyWVyyNM_oKZySaVVdFyzbIj88K0ErAdBK0IXWG7UxpBRpNMfoFoxnA9ysQZuD2YI2a9AGhClBl7Z3TxswWZzHiN669L9XyFZxLaC4t5sbMRicYjEPd2WQKodRna5X8WkTVKL74yiaZB15S4OLZLMZgnv-K_8A8Cygeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762118317</pqid></control><display><type>article</type><title>Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sanaye, Sepehr ; Fardad, Abbasali ; Mostakhdemi, Masoud</creator><creatorcontrib>Sanaye, Sepehr ; Fardad, Abbasali ; Mostakhdemi, Masoud</creatorcontrib><description>The gas turbine power output and efficiency decrease with increasing ambient temperature. With compressor inlet air cooling, the air density and mass flow rate as well as the gas turbine net power output increase. The inlet cooling techniques include vapor or absorption refrigeration systems, evaporative cooling systems and thermal energy storage (TES) systems. In this paper the thermoeconomic analysis of ice (latent) thermal energy storage system for gas turbine inlet cooling application was performed. The optimum values of system design parameters were obtained using genetic algorithm optimization technique. The objective function included the capital and operational costs of the gas turbine, vapor compression refrigeration system, without (objective function I) and with (objective function II) corresponding cost due to the system exergy destruction. For gas turbines with net power output in the range of 25–100
MW, the inlet air cooling using a TES system increased the power output in the range of 3.9–25.7%, increased the efficiency in the range 2.1–5.2%, while increased the payback period from about 4 to 7.7 years.
► A TES system for a gas turbine inlet air cooling was modeled which included all sub-systems and equipment. ► The optimal design of TES system with a new objective function and a new list of design parameters was carried out by using thermoeconomic analysis. ► The effect of gas turbine nominal power output on optimal design parameters was investigated. ► The sensitivity analysis of change in design parameters with fuel unit cost and capital cost was performed.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2010.12.002</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>absorption ; air ; Air cooling ; algorithms ; ambient temperature ; Applied sciences ; capital ; cooling ; Cooling systems ; Costs ; Energy ; energy costs ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; exergy ; Gas turbines ; ice ; Inlet air cooling system ; Inlets ; mass flow ; Optimization ; Refrigeration ; systems engineering ; Thermal energy ; Thermal energy storage system ; Thermoeconomic optimization ; turbines ; vapors</subject><ispartof>Energy (Oxford), 2011-02, Vol.36 (2), p.1057-1067</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-31391ac6c3bbaa72987257f83757a5ede40116610d053a9cc8796b6903711b1d3</citedby><cites>FETCH-LOGICAL-c491t-31391ac6c3bbaa72987257f83757a5ede40116610d053a9cc8796b6903711b1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2010.12.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23860721$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanaye, Sepehr</creatorcontrib><creatorcontrib>Fardad, Abbasali</creatorcontrib><creatorcontrib>Mostakhdemi, Masoud</creatorcontrib><title>Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling</title><title>Energy (Oxford)</title><description>The gas turbine power output and efficiency decrease with increasing ambient temperature. With compressor inlet air cooling, the air density and mass flow rate as well as the gas turbine net power output increase. The inlet cooling techniques include vapor or absorption refrigeration systems, evaporative cooling systems and thermal energy storage (TES) systems. In this paper the thermoeconomic analysis of ice (latent) thermal energy storage system for gas turbine inlet cooling application was performed. The optimum values of system design parameters were obtained using genetic algorithm optimization technique. The objective function included the capital and operational costs of the gas turbine, vapor compression refrigeration system, without (objective function I) and with (objective function II) corresponding cost due to the system exergy destruction. For gas turbines with net power output in the range of 25–100
MW, the inlet air cooling using a TES system increased the power output in the range of 3.9–25.7%, increased the efficiency in the range 2.1–5.2%, while increased the payback period from about 4 to 7.7 years.
► A TES system for a gas turbine inlet air cooling was modeled which included all sub-systems and equipment. ► The optimal design of TES system with a new objective function and a new list of design parameters was carried out by using thermoeconomic analysis. ► The effect of gas turbine nominal power output on optimal design parameters was investigated. ► The sensitivity analysis of change in design parameters with fuel unit cost and capital cost was performed.</description><subject>absorption</subject><subject>air</subject><subject>Air cooling</subject><subject>algorithms</subject><subject>ambient temperature</subject><subject>Applied sciences</subject><subject>capital</subject><subject>cooling</subject><subject>Cooling systems</subject><subject>Costs</subject><subject>Energy</subject><subject>energy costs</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>exergy</subject><subject>Gas turbines</subject><subject>ice</subject><subject>Inlet air cooling system</subject><subject>Inlets</subject><subject>mass flow</subject><subject>Optimization</subject><subject>Refrigeration</subject><subject>systems engineering</subject><subject>Thermal energy</subject><subject>Thermal energy storage system</subject><subject>Thermoeconomic optimization</subject><subject>turbines</subject><subject>vapors</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90U1r3DAQBmAfWmia5h8EqktpL7vVSLZkXwol9AsCPSS55CLG8tjVYktbSVvY_vrKOPSYk2B4Zka8U1XXwPfAQX087MlTnM57wdeS2HMuXlQXXCq-a-pavKpep3TgnDdt111Uj_e_KC6BbPBhcZaFY3aL-4vZBc_CyNAzZ4nlVeHMUg4RJ2LpnDItbAyRTZhYPsXeeWLOz5SZDWF2fnpTvRxxTnT19F5WD1-_3N98393-_Pbj5vPtztYd5J0E2QFaZWXfI2rRtVo0emylbjQ2NFDNAZQCPvBGYmdtqzvVq45LDdDDIC-r99vcYwy_T5SyWVyyNM_oKZySaVVdFyzbIj88K0ErAdBK0IXWG7UxpBRpNMfoFoxnA9ysQZuD2YI2a9AGhClBl7Z3TxswWZzHiN669L9XyFZxLaC4t5sbMRicYjEPd2WQKodRna5X8WkTVKL74yiaZB15S4OLZLMZgnv-K_8A8Cygeg</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Sanaye, Sepehr</creator><creator>Fardad, Abbasali</creator><creator>Mostakhdemi, Masoud</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20110201</creationdate><title>Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling</title><author>Sanaye, Sepehr ; Fardad, Abbasali ; Mostakhdemi, Masoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-31391ac6c3bbaa72987257f83757a5ede40116610d053a9cc8796b6903711b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>absorption</topic><topic>air</topic><topic>Air cooling</topic><topic>algorithms</topic><topic>ambient temperature</topic><topic>Applied sciences</topic><topic>capital</topic><topic>cooling</topic><topic>Cooling systems</topic><topic>Costs</topic><topic>Energy</topic><topic>energy costs</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>exergy</topic><topic>Gas turbines</topic><topic>ice</topic><topic>Inlet air cooling system</topic><topic>Inlets</topic><topic>mass flow</topic><topic>Optimization</topic><topic>Refrigeration</topic><topic>systems engineering</topic><topic>Thermal energy</topic><topic>Thermal energy storage system</topic><topic>Thermoeconomic optimization</topic><topic>turbines</topic><topic>vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanaye, Sepehr</creatorcontrib><creatorcontrib>Fardad, Abbasali</creatorcontrib><creatorcontrib>Mostakhdemi, Masoud</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanaye, Sepehr</au><au>Fardad, Abbasali</au><au>Mostakhdemi, Masoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling</atitle><jtitle>Energy (Oxford)</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>36</volume><issue>2</issue><spage>1057</spage><epage>1067</epage><pages>1057-1067</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>The gas turbine power output and efficiency decrease with increasing ambient temperature. With compressor inlet air cooling, the air density and mass flow rate as well as the gas turbine net power output increase. The inlet cooling techniques include vapor or absorption refrigeration systems, evaporative cooling systems and thermal energy storage (TES) systems. In this paper the thermoeconomic analysis of ice (latent) thermal energy storage system for gas turbine inlet cooling application was performed. The optimum values of system design parameters were obtained using genetic algorithm optimization technique. The objective function included the capital and operational costs of the gas turbine, vapor compression refrigeration system, without (objective function I) and with (objective function II) corresponding cost due to the system exergy destruction. For gas turbines with net power output in the range of 25–100
MW, the inlet air cooling using a TES system increased the power output in the range of 3.9–25.7%, increased the efficiency in the range 2.1–5.2%, while increased the payback period from about 4 to 7.7 years.
► A TES system for a gas turbine inlet air cooling was modeled which included all sub-systems and equipment. ► The optimal design of TES system with a new objective function and a new list of design parameters was carried out by using thermoeconomic analysis. ► The effect of gas turbine nominal power output on optimal design parameters was investigated. ► The sensitivity analysis of change in design parameters with fuel unit cost and capital cost was performed.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2010.12.002</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2011-02, Vol.36 (2), p.1057-1067 |
issn | 0360-5442 |
language | eng |
recordid | cdi_proquest_miscellaneous_864403738 |
source | Access via ScienceDirect (Elsevier) |
subjects | absorption air Air cooling algorithms ambient temperature Applied sciences capital cooling Cooling systems Costs Energy energy costs Energy. Thermal use of fuels Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology exergy Gas turbines ice Inlet air cooling system Inlets mass flow Optimization Refrigeration systems engineering Thermal energy Thermal energy storage system Thermoeconomic optimization turbines vapors |
title | Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoeconomic%20optimization%20of%20an%20ice%20thermal%20storage%20system%20for%20gas%20turbine%20inlet%20cooling&rft.jtitle=Energy%20(Oxford)&rft.au=Sanaye,%20Sepehr&rft.date=2011-02-01&rft.volume=36&rft.issue=2&rft.spage=1057&rft.epage=1067&rft.pages=1057-1067&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2010.12.002&rft_dat=%3Cproquest_cross%3E864403738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762118317&rft_id=info:pmid/&rft_els_id=S0360544210006924&rfr_iscdi=true |