Biomimetic sensing layer based on electrospun conductive polymer webs
The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr–Au, 3 × 3) coated with electrospun nanofibrous structures. The...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2011-01, Vol.26 (5), p.2460-2465 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2465 |
---|---|
container_issue | 5 |
container_start_page | 2460 |
container_title | Biosensors & bioelectronics |
container_volume | 26 |
creator | Zampetti, E. Pantalei, S. Scalese, S. Bearzotti, A. De Cesare, F. Spinella, C. Macagnano, A. |
description | The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr–Au, 3
×
3) coated with electrospun nanofibrous structures. These were comprised of doped polyemeraldine base blended with 3 different polymers: polyethylene oxide, polyvinilpyrrolidone and polystyrene, which acted as carriers for the conducting polymer and were the major responsible of the features of each fibrous overlay (electrical parameters, selectivity and sensitivity ranges). The two sensing strategies here adopted and compared consisted in the use of 2 different textural coatings: a single- and a double-overlay, where the double-overlay resulting from overdeposition of 2 different polymer blends. Such e-nose included a plurality of nanofibres whose electrical parameters were at the same time depending on each polymer exposure to analytes (NO
2, NH
3) and on the spatial distribution of the interlacing fibres. The morphology of the coating arrangements of this novel e-nose was investigated by scanning electron microscopy (SEM) and its sensor responses were processed by multicomponent data analyses (PCA and PLS) reporting encouraging results for detection and recognition of analytes at ppb levels. |
doi_str_mv | 10.1016/j.bios.2010.10.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864396656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566310007177</els_id><sourcerecordid>864396656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-79e6d3fc2faab431b895af6e73c828c0ce3d70d55467143c15a3dcedc8f94a753</originalsourceid><addsrcrecordid>eNqFkUtv1DAQgK0KRLcLf4AD5IJ6yuJ3EolLW_WBVIkD9Gw540nlVRIvdtJq_z3eR8sNTiONvnl9Q8hHRleMMv11vWp9SCtO94kVFfyELFhdiVJyod6QBW2ULpXW4pScpbSmlFasoe_IKWe0EVzWC3J96cPgB5w8FAnH5MfHordbjEVrE7oijAX2CFMMaTOPBYTRzTD5Jyw2od8OmXvGNr0nbzvbJ_xwjEvycHP96-quvP9x-_3q4r4EpdhUVg1qJzrgnbWtFKytG2U7jZWAmtdAAYWrqFNK6opJAUxZ4QAd1F0jbaXEkpwf-m5i-D1jmszgE2Df2xHDnEytpWi0Vvr_JOdC8yprWBJ-ICHfmCJ2ZhP9YOPWMGp2ns3a7DybneddLnvORZ-O7ed2QPda8iI2A1-OgE1g-y7aEXz6y4layoxm7vOB62ww9jFm5uFnnqT2z9J74tuBwCz2yWM0CTyOWYuP-THGBf-vTf8Askak3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822362709</pqid></control><display><type>article</type><title>Biomimetic sensing layer based on electrospun conductive polymer webs</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zampetti, E. ; Pantalei, S. ; Scalese, S. ; Bearzotti, A. ; De Cesare, F. ; Spinella, C. ; Macagnano, A.</creator><creatorcontrib>Zampetti, E. ; Pantalei, S. ; Scalese, S. ; Bearzotti, A. ; De Cesare, F. ; Spinella, C. ; Macagnano, A.</creatorcontrib><description>The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr–Au, 3
×
3) coated with electrospun nanofibrous structures. These were comprised of doped polyemeraldine base blended with 3 different polymers: polyethylene oxide, polyvinilpyrrolidone and polystyrene, which acted as carriers for the conducting polymer and were the major responsible of the features of each fibrous overlay (electrical parameters, selectivity and sensitivity ranges). The two sensing strategies here adopted and compared consisted in the use of 2 different textural coatings: a single- and a double-overlay, where the double-overlay resulting from overdeposition of 2 different polymer blends. Such e-nose included a plurality of nanofibres whose electrical parameters were at the same time depending on each polymer exposure to analytes (NO
2, NH
3) and on the spatial distribution of the interlacing fibres. The morphology of the coating arrangements of this novel e-nose was investigated by scanning electron microscopy (SEM) and its sensor responses were processed by multicomponent data analyses (PCA and PLS) reporting encouraging results for detection and recognition of analytes at ppb levels.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2010.10.032</identifier><identifier>PMID: 21093248</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>ammonia ; Bioinspired systems ; Biological and medical sciences ; biomimetics ; Biomimetics - methods ; Biosensing Techniques - instrumentation ; biosensors ; Biotechnology ; coatings ; Conductometry - instrumentation ; Electric Conductivity ; electrical properties ; Electronic nose ; Electrospinning ; epithelium ; Equipment Design ; Equipment Failure Analysis ; Fundamental and applied biological sciences. Psychology ; Gases - analysis ; Gases - chemistry ; Humans ; nanofibers ; Nanofibres ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; nitrogen dioxide ; Nose ; PANi blends ; polyethylene ; Polymers - chemistry ; polystyrenes ; Rotation ; scanning electron microscopy ; webs</subject><ispartof>Biosensors & bioelectronics, 2011-01, Vol.26 (5), p.2460-2465</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-79e6d3fc2faab431b895af6e73c828c0ce3d70d55467143c15a3dcedc8f94a753</citedby><cites>FETCH-LOGICAL-c551t-79e6d3fc2faab431b895af6e73c828c0ce3d70d55467143c15a3dcedc8f94a753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566310007177$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23844093$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21093248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zampetti, E.</creatorcontrib><creatorcontrib>Pantalei, S.</creatorcontrib><creatorcontrib>Scalese, S.</creatorcontrib><creatorcontrib>Bearzotti, A.</creatorcontrib><creatorcontrib>De Cesare, F.</creatorcontrib><creatorcontrib>Spinella, C.</creatorcontrib><creatorcontrib>Macagnano, A.</creatorcontrib><title>Biomimetic sensing layer based on electrospun conductive polymer webs</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr–Au, 3
×
3) coated with electrospun nanofibrous structures. These were comprised of doped polyemeraldine base blended with 3 different polymers: polyethylene oxide, polyvinilpyrrolidone and polystyrene, which acted as carriers for the conducting polymer and were the major responsible of the features of each fibrous overlay (electrical parameters, selectivity and sensitivity ranges). The two sensing strategies here adopted and compared consisted in the use of 2 different textural coatings: a single- and a double-overlay, where the double-overlay resulting from overdeposition of 2 different polymer blends. Such e-nose included a plurality of nanofibres whose electrical parameters were at the same time depending on each polymer exposure to analytes (NO
2, NH
3) and on the spatial distribution of the interlacing fibres. The morphology of the coating arrangements of this novel e-nose was investigated by scanning electron microscopy (SEM) and its sensor responses were processed by multicomponent data analyses (PCA and PLS) reporting encouraging results for detection and recognition of analytes at ppb levels.</description><subject>ammonia</subject><subject>Bioinspired systems</subject><subject>Biological and medical sciences</subject><subject>biomimetics</subject><subject>Biomimetics - methods</subject><subject>Biosensing Techniques - instrumentation</subject><subject>biosensors</subject><subject>Biotechnology</subject><subject>coatings</subject><subject>Conductometry - instrumentation</subject><subject>Electric Conductivity</subject><subject>electrical properties</subject><subject>Electronic nose</subject><subject>Electrospinning</subject><subject>epithelium</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gases - analysis</subject><subject>Gases - chemistry</subject><subject>Humans</subject><subject>nanofibers</subject><subject>Nanofibres</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>nitrogen dioxide</subject><subject>Nose</subject><subject>PANi blends</subject><subject>polyethylene</subject><subject>Polymers - chemistry</subject><subject>polystyrenes</subject><subject>Rotation</subject><subject>scanning electron microscopy</subject><subject>webs</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAQgK0KRLcLf4AD5IJ6yuJ3EolLW_WBVIkD9Gw540nlVRIvdtJq_z3eR8sNTiONvnl9Q8hHRleMMv11vWp9SCtO94kVFfyELFhdiVJyod6QBW2ULpXW4pScpbSmlFasoe_IKWe0EVzWC3J96cPgB5w8FAnH5MfHordbjEVrE7oijAX2CFMMaTOPBYTRzTD5Jyw2od8OmXvGNr0nbzvbJ_xwjEvycHP96-quvP9x-_3q4r4EpdhUVg1qJzrgnbWtFKytG2U7jZWAmtdAAYWrqFNK6opJAUxZ4QAd1F0jbaXEkpwf-m5i-D1jmszgE2Df2xHDnEytpWi0Vvr_JOdC8yprWBJ-ICHfmCJ2ZhP9YOPWMGp2ns3a7DybneddLnvORZ-O7ed2QPda8iI2A1-OgE1g-y7aEXz6y4layoxm7vOB62ww9jFm5uFnnqT2z9J74tuBwCz2yWM0CTyOWYuP-THGBf-vTf8Askak3g</recordid><startdate>20110115</startdate><enddate>20110115</enddate><creator>Zampetti, E.</creator><creator>Pantalei, S.</creator><creator>Scalese, S.</creator><creator>Bearzotti, A.</creator><creator>De Cesare, F.</creator><creator>Spinella, C.</creator><creator>Macagnano, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110115</creationdate><title>Biomimetic sensing layer based on electrospun conductive polymer webs</title><author>Zampetti, E. ; Pantalei, S. ; Scalese, S. ; Bearzotti, A. ; De Cesare, F. ; Spinella, C. ; Macagnano, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-79e6d3fc2faab431b895af6e73c828c0ce3d70d55467143c15a3dcedc8f94a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ammonia</topic><topic>Bioinspired systems</topic><topic>Biological and medical sciences</topic><topic>biomimetics</topic><topic>Biomimetics - methods</topic><topic>Biosensing Techniques - instrumentation</topic><topic>biosensors</topic><topic>Biotechnology</topic><topic>coatings</topic><topic>Conductometry - instrumentation</topic><topic>Electric Conductivity</topic><topic>electrical properties</topic><topic>Electronic nose</topic><topic>Electrospinning</topic><topic>epithelium</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gases - analysis</topic><topic>Gases - chemistry</topic><topic>Humans</topic><topic>nanofibers</topic><topic>Nanofibres</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>nitrogen dioxide</topic><topic>Nose</topic><topic>PANi blends</topic><topic>polyethylene</topic><topic>Polymers - chemistry</topic><topic>polystyrenes</topic><topic>Rotation</topic><topic>scanning electron microscopy</topic><topic>webs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zampetti, E.</creatorcontrib><creatorcontrib>Pantalei, S.</creatorcontrib><creatorcontrib>Scalese, S.</creatorcontrib><creatorcontrib>Bearzotti, A.</creatorcontrib><creatorcontrib>De Cesare, F.</creatorcontrib><creatorcontrib>Spinella, C.</creatorcontrib><creatorcontrib>Macagnano, A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zampetti, E.</au><au>Pantalei, S.</au><au>Scalese, S.</au><au>Bearzotti, A.</au><au>De Cesare, F.</au><au>Spinella, C.</au><au>Macagnano, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic sensing layer based on electrospun conductive polymer webs</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2011-01-15</date><risdate>2011</risdate><volume>26</volume><issue>5</issue><spage>2460</spage><epage>2465</epage><pages>2460-2465</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr–Au, 3
×
3) coated with electrospun nanofibrous structures. These were comprised of doped polyemeraldine base blended with 3 different polymers: polyethylene oxide, polyvinilpyrrolidone and polystyrene, which acted as carriers for the conducting polymer and were the major responsible of the features of each fibrous overlay (electrical parameters, selectivity and sensitivity ranges). The two sensing strategies here adopted and compared consisted in the use of 2 different textural coatings: a single- and a double-overlay, where the double-overlay resulting from overdeposition of 2 different polymer blends. Such e-nose included a plurality of nanofibres whose electrical parameters were at the same time depending on each polymer exposure to analytes (NO
2, NH
3) and on the spatial distribution of the interlacing fibres. The morphology of the coating arrangements of this novel e-nose was investigated by scanning electron microscopy (SEM) and its sensor responses were processed by multicomponent data analyses (PCA and PLS) reporting encouraging results for detection and recognition of analytes at ppb levels.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>21093248</pmid><doi>10.1016/j.bios.2010.10.032</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2011-01, Vol.26 (5), p.2460-2465 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_864396656 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | ammonia Bioinspired systems Biological and medical sciences biomimetics Biomimetics - methods Biosensing Techniques - instrumentation biosensors Biotechnology coatings Conductometry - instrumentation Electric Conductivity electrical properties Electronic nose Electrospinning epithelium Equipment Design Equipment Failure Analysis Fundamental and applied biological sciences. Psychology Gases - analysis Gases - chemistry Humans nanofibers Nanofibres Nanostructures - chemistry Nanostructures - ultrastructure nitrogen dioxide Nose PANi blends polyethylene Polymers - chemistry polystyrenes Rotation scanning electron microscopy webs |
title | Biomimetic sensing layer based on electrospun conductive polymer webs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20sensing%20layer%20based%20on%20electrospun%20conductive%20polymer%20webs&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Zampetti,%20E.&rft.date=2011-01-15&rft.volume=26&rft.issue=5&rft.spage=2460&rft.epage=2465&rft.pages=2460-2465&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2010.10.032&rft_dat=%3Cproquest_cross%3E864396656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822362709&rft_id=info:pmid/21093248&rft_els_id=S0956566310007177&rfr_iscdi=true |