Biomimetic sensing layer based on electrospun conductive polymer webs

The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr–Au, 3 × 3) coated with electrospun nanofibrous structures. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2011-01, Vol.26 (5), p.2460-2465
Hauptverfasser: Zampetti, E., Pantalei, S., Scalese, S., Bearzotti, A., De Cesare, F., Spinella, C., Macagnano, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2465
container_issue 5
container_start_page 2460
container_title Biosensors & bioelectronics
container_volume 26
creator Zampetti, E.
Pantalei, S.
Scalese, S.
Bearzotti, A.
De Cesare, F.
Spinella, C.
Macagnano, A.
description The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr–Au, 3 × 3) coated with electrospun nanofibrous structures. These were comprised of doped polyemeraldine base blended with 3 different polymers: polyethylene oxide, polyvinilpyrrolidone and polystyrene, which acted as carriers for the conducting polymer and were the major responsible of the features of each fibrous overlay (electrical parameters, selectivity and sensitivity ranges). The two sensing strategies here adopted and compared consisted in the use of 2 different textural coatings: a single- and a double-overlay, where the double-overlay resulting from overdeposition of 2 different polymer blends. Such e-nose included a plurality of nanofibres whose electrical parameters were at the same time depending on each polymer exposure to analytes (NO 2, NH 3) and on the spatial distribution of the interlacing fibres. The morphology of the coating arrangements of this novel e-nose was investigated by scanning electron microscopy (SEM) and its sensor responses were processed by multicomponent data analyses (PCA and PLS) reporting encouraging results for detection and recognition of analytes at ppb levels.
doi_str_mv 10.1016/j.bios.2010.10.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864396656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566310007177</els_id><sourcerecordid>864396656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-79e6d3fc2faab431b895af6e73c828c0ce3d70d55467143c15a3dcedc8f94a753</originalsourceid><addsrcrecordid>eNqFkUtv1DAQgK0KRLcLf4AD5IJ6yuJ3EolLW_WBVIkD9Gw540nlVRIvdtJq_z3eR8sNTiONvnl9Q8hHRleMMv11vWp9SCtO94kVFfyELFhdiVJyod6QBW2ULpXW4pScpbSmlFasoe_IKWe0EVzWC3J96cPgB5w8FAnH5MfHordbjEVrE7oijAX2CFMMaTOPBYTRzTD5Jyw2od8OmXvGNr0nbzvbJ_xwjEvycHP96-quvP9x-_3q4r4EpdhUVg1qJzrgnbWtFKytG2U7jZWAmtdAAYWrqFNK6opJAUxZ4QAd1F0jbaXEkpwf-m5i-D1jmszgE2Df2xHDnEytpWi0Vvr_JOdC8yprWBJ-ICHfmCJ2ZhP9YOPWMGp2ns3a7DybneddLnvORZ-O7ed2QPda8iI2A1-OgE1g-y7aEXz6y4layoxm7vOB62ww9jFm5uFnnqT2z9J74tuBwCz2yWM0CTyOWYuP-THGBf-vTf8Askak3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822362709</pqid></control><display><type>article</type><title>Biomimetic sensing layer based on electrospun conductive polymer webs</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zampetti, E. ; Pantalei, S. ; Scalese, S. ; Bearzotti, A. ; De Cesare, F. ; Spinella, C. ; Macagnano, A.</creator><creatorcontrib>Zampetti, E. ; Pantalei, S. ; Scalese, S. ; Bearzotti, A. ; De Cesare, F. ; Spinella, C. ; Macagnano, A.</creatorcontrib><description>The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr–Au, 3 × 3) coated with electrospun nanofibrous structures. These were comprised of doped polyemeraldine base blended with 3 different polymers: polyethylene oxide, polyvinilpyrrolidone and polystyrene, which acted as carriers for the conducting polymer and were the major responsible of the features of each fibrous overlay (electrical parameters, selectivity and sensitivity ranges). The two sensing strategies here adopted and compared consisted in the use of 2 different textural coatings: a single- and a double-overlay, where the double-overlay resulting from overdeposition of 2 different polymer blends. Such e-nose included a plurality of nanofibres whose electrical parameters were at the same time depending on each polymer exposure to analytes (NO 2, NH 3) and on the spatial distribution of the interlacing fibres. The morphology of the coating arrangements of this novel e-nose was investigated by scanning electron microscopy (SEM) and its sensor responses were processed by multicomponent data analyses (PCA and PLS) reporting encouraging results for detection and recognition of analytes at ppb levels.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2010.10.032</identifier><identifier>PMID: 21093248</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>ammonia ; Bioinspired systems ; Biological and medical sciences ; biomimetics ; Biomimetics - methods ; Biosensing Techniques - instrumentation ; biosensors ; Biotechnology ; coatings ; Conductometry - instrumentation ; Electric Conductivity ; electrical properties ; Electronic nose ; Electrospinning ; epithelium ; Equipment Design ; Equipment Failure Analysis ; Fundamental and applied biological sciences. Psychology ; Gases - analysis ; Gases - chemistry ; Humans ; nanofibers ; Nanofibres ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; nitrogen dioxide ; Nose ; PANi blends ; polyethylene ; Polymers - chemistry ; polystyrenes ; Rotation ; scanning electron microscopy ; webs</subject><ispartof>Biosensors &amp; bioelectronics, 2011-01, Vol.26 (5), p.2460-2465</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-79e6d3fc2faab431b895af6e73c828c0ce3d70d55467143c15a3dcedc8f94a753</citedby><cites>FETCH-LOGICAL-c551t-79e6d3fc2faab431b895af6e73c828c0ce3d70d55467143c15a3dcedc8f94a753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566310007177$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23844093$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21093248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zampetti, E.</creatorcontrib><creatorcontrib>Pantalei, S.</creatorcontrib><creatorcontrib>Scalese, S.</creatorcontrib><creatorcontrib>Bearzotti, A.</creatorcontrib><creatorcontrib>De Cesare, F.</creatorcontrib><creatorcontrib>Spinella, C.</creatorcontrib><creatorcontrib>Macagnano, A.</creatorcontrib><title>Biomimetic sensing layer based on electrospun conductive polymer webs</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr–Au, 3 × 3) coated with electrospun nanofibrous structures. These were comprised of doped polyemeraldine base blended with 3 different polymers: polyethylene oxide, polyvinilpyrrolidone and polystyrene, which acted as carriers for the conducting polymer and were the major responsible of the features of each fibrous overlay (electrical parameters, selectivity and sensitivity ranges). The two sensing strategies here adopted and compared consisted in the use of 2 different textural coatings: a single- and a double-overlay, where the double-overlay resulting from overdeposition of 2 different polymer blends. Such e-nose included a plurality of nanofibres whose electrical parameters were at the same time depending on each polymer exposure to analytes (NO 2, NH 3) and on the spatial distribution of the interlacing fibres. The morphology of the coating arrangements of this novel e-nose was investigated by scanning electron microscopy (SEM) and its sensor responses were processed by multicomponent data analyses (PCA and PLS) reporting encouraging results for detection and recognition of analytes at ppb levels.</description><subject>ammonia</subject><subject>Bioinspired systems</subject><subject>Biological and medical sciences</subject><subject>biomimetics</subject><subject>Biomimetics - methods</subject><subject>Biosensing Techniques - instrumentation</subject><subject>biosensors</subject><subject>Biotechnology</subject><subject>coatings</subject><subject>Conductometry - instrumentation</subject><subject>Electric Conductivity</subject><subject>electrical properties</subject><subject>Electronic nose</subject><subject>Electrospinning</subject><subject>epithelium</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gases - analysis</subject><subject>Gases - chemistry</subject><subject>Humans</subject><subject>nanofibers</subject><subject>Nanofibres</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>nitrogen dioxide</subject><subject>Nose</subject><subject>PANi blends</subject><subject>polyethylene</subject><subject>Polymers - chemistry</subject><subject>polystyrenes</subject><subject>Rotation</subject><subject>scanning electron microscopy</subject><subject>webs</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAQgK0KRLcLf4AD5IJ6yuJ3EolLW_WBVIkD9Gw540nlVRIvdtJq_z3eR8sNTiONvnl9Q8hHRleMMv11vWp9SCtO94kVFfyELFhdiVJyod6QBW2ULpXW4pScpbSmlFasoe_IKWe0EVzWC3J96cPgB5w8FAnH5MfHordbjEVrE7oijAX2CFMMaTOPBYTRzTD5Jyw2od8OmXvGNr0nbzvbJ_xwjEvycHP96-quvP9x-_3q4r4EpdhUVg1qJzrgnbWtFKytG2U7jZWAmtdAAYWrqFNK6opJAUxZ4QAd1F0jbaXEkpwf-m5i-D1jmszgE2Df2xHDnEytpWi0Vvr_JOdC8yprWBJ-ICHfmCJ2ZhP9YOPWMGp2ns3a7DybneddLnvORZ-O7ed2QPda8iI2A1-OgE1g-y7aEXz6y4layoxm7vOB62ww9jFm5uFnnqT2z9J74tuBwCz2yWM0CTyOWYuP-THGBf-vTf8Askak3g</recordid><startdate>20110115</startdate><enddate>20110115</enddate><creator>Zampetti, E.</creator><creator>Pantalei, S.</creator><creator>Scalese, S.</creator><creator>Bearzotti, A.</creator><creator>De Cesare, F.</creator><creator>Spinella, C.</creator><creator>Macagnano, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110115</creationdate><title>Biomimetic sensing layer based on electrospun conductive polymer webs</title><author>Zampetti, E. ; Pantalei, S. ; Scalese, S. ; Bearzotti, A. ; De Cesare, F. ; Spinella, C. ; Macagnano, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-79e6d3fc2faab431b895af6e73c828c0ce3d70d55467143c15a3dcedc8f94a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ammonia</topic><topic>Bioinspired systems</topic><topic>Biological and medical sciences</topic><topic>biomimetics</topic><topic>Biomimetics - methods</topic><topic>Biosensing Techniques - instrumentation</topic><topic>biosensors</topic><topic>Biotechnology</topic><topic>coatings</topic><topic>Conductometry - instrumentation</topic><topic>Electric Conductivity</topic><topic>electrical properties</topic><topic>Electronic nose</topic><topic>Electrospinning</topic><topic>epithelium</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gases - analysis</topic><topic>Gases - chemistry</topic><topic>Humans</topic><topic>nanofibers</topic><topic>Nanofibres</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>nitrogen dioxide</topic><topic>Nose</topic><topic>PANi blends</topic><topic>polyethylene</topic><topic>Polymers - chemistry</topic><topic>polystyrenes</topic><topic>Rotation</topic><topic>scanning electron microscopy</topic><topic>webs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zampetti, E.</creatorcontrib><creatorcontrib>Pantalei, S.</creatorcontrib><creatorcontrib>Scalese, S.</creatorcontrib><creatorcontrib>Bearzotti, A.</creatorcontrib><creatorcontrib>De Cesare, F.</creatorcontrib><creatorcontrib>Spinella, C.</creatorcontrib><creatorcontrib>Macagnano, A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zampetti, E.</au><au>Pantalei, S.</au><au>Scalese, S.</au><au>Bearzotti, A.</au><au>De Cesare, F.</au><au>Spinella, C.</au><au>Macagnano, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic sensing layer based on electrospun conductive polymer webs</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2011-01-15</date><risdate>2011</risdate><volume>26</volume><issue>5</issue><spage>2460</spage><epage>2465</epage><pages>2460-2465</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr–Au, 3 × 3) coated with electrospun nanofibrous structures. These were comprised of doped polyemeraldine base blended with 3 different polymers: polyethylene oxide, polyvinilpyrrolidone and polystyrene, which acted as carriers for the conducting polymer and were the major responsible of the features of each fibrous overlay (electrical parameters, selectivity and sensitivity ranges). The two sensing strategies here adopted and compared consisted in the use of 2 different textural coatings: a single- and a double-overlay, where the double-overlay resulting from overdeposition of 2 different polymer blends. Such e-nose included a plurality of nanofibres whose electrical parameters were at the same time depending on each polymer exposure to analytes (NO 2, NH 3) and on the spatial distribution of the interlacing fibres. The morphology of the coating arrangements of this novel e-nose was investigated by scanning electron microscopy (SEM) and its sensor responses were processed by multicomponent data analyses (PCA and PLS) reporting encouraging results for detection and recognition of analytes at ppb levels.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>21093248</pmid><doi>10.1016/j.bios.2010.10.032</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2011-01, Vol.26 (5), p.2460-2465
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_864396656
source MEDLINE; Elsevier ScienceDirect Journals
subjects ammonia
Bioinspired systems
Biological and medical sciences
biomimetics
Biomimetics - methods
Biosensing Techniques - instrumentation
biosensors
Biotechnology
coatings
Conductometry - instrumentation
Electric Conductivity
electrical properties
Electronic nose
Electrospinning
epithelium
Equipment Design
Equipment Failure Analysis
Fundamental and applied biological sciences. Psychology
Gases - analysis
Gases - chemistry
Humans
nanofibers
Nanofibres
Nanostructures - chemistry
Nanostructures - ultrastructure
nitrogen dioxide
Nose
PANi blends
polyethylene
Polymers - chemistry
polystyrenes
Rotation
scanning electron microscopy
webs
title Biomimetic sensing layer based on electrospun conductive polymer webs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20sensing%20layer%20based%20on%20electrospun%20conductive%20polymer%20webs&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Zampetti,%20E.&rft.date=2011-01-15&rft.volume=26&rft.issue=5&rft.spage=2460&rft.epage=2465&rft.pages=2460-2465&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2010.10.032&rft_dat=%3Cproquest_cross%3E864396656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822362709&rft_id=info:pmid/21093248&rft_els_id=S0956566310007177&rfr_iscdi=true