Data-Driven Prediction of Sintering Burn-Through Point Based on Novel Genetic Programming
An empirical dynamic model of burn-through point (BTP) in sintering process was developed. The K-means clustering was used to feed distribution according to the cold bed permeability, which was estimated by the superficial gas velocity in the cold stage. For each clustering, a novel genetic programm...
Gespeichert in:
Veröffentlicht in: | Journal of iron and steel research, international international, 2010-12, Vol.17 (12), p.1-5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | Journal of iron and steel research, international |
container_volume | 17 |
creator | SHANG, Xiu-qin LU, Jian-gang SUN, You-xian LIU, Jun YING, Yu-qian |
description | An empirical dynamic model of burn-through point (BTP) in sintering process was developed. The K-means clustering was used to feed distribution according to the cold bed permeability, which was estimated by the superficial gas velocity in the cold stage. For each clustering, a novel genetic programming (NGP) was proposed to construct the empirical model of the waste gas temperature and the bed pressure drop in the sintering stage. The least square method (LSM) and M-estimator were adopted in NGP to improve the ability to compute and resist disturbance. Simulation results show the superiority of the proposed method. |
doi_str_mv | 10.1016/S1006-706X(10)60188-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864396186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>36187229</cqvip_id><els_id>S1006706X10601884</els_id><sourcerecordid>864396186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-390979956ce5a385bc90b353f8ffa6ff7a08d2ef5014e31ff581c539f92ebb9f3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWNRHEAY36mI0mcykyUr8rYKoYAVdhUx606ZOk5pMC769mba4bTYXLuec3PMhdEzwBcGEXb4TjFnex-zzjOBzhgnnebmDekVBcE4F57uo9y_ZR0cxTnH3BKMF76GvO9Wq_C7YJbjsLcDI6tZ6l3mTvVvXQrBunN0sgsuHk-AX40n25tM-u1ERRlkSvvglNNkAHLRWpwQ_Dmo2S65DtGdUE-FoMw_Qx8P98PYxf34dPN1eP-e65KRNJ2LRF6JiGipFeVVrgWtaUcONUcyYvsJ8VICpMCmBEmMqTnRFhREF1LUw9ACdrnPnwf8sILZyZqOGplEO_CJKzkoqGOEsKau1UgcfYwAj58HOVPiVBMsOplzBlB2pbrWCKcvkY2tfnHc4IMipT0RSqa3Gq7URUv-lTcaoLTidKAfQrRx5uzXhZHPyxLvxT_pd1kp_G9uApKlUvygE_QNRgZgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864396186</pqid></control><display><type>article</type><title>Data-Driven Prediction of Sintering Burn-Through Point Based on Novel Genetic Programming</title><source>SpringerNature Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>SHANG, Xiu-qin ; LU, Jian-gang ; SUN, You-xian ; LIU, Jun ; YING, Yu-qian</creator><creatorcontrib>SHANG, Xiu-qin ; LU, Jian-gang ; SUN, You-xian ; LIU, Jun ; YING, Yu-qian</creatorcontrib><description>An empirical dynamic model of burn-through point (BTP) in sintering process was developed. The K-means clustering was used to feed distribution according to the cold bed permeability, which was estimated by the superficial gas velocity in the cold stage. For each clustering, a novel genetic programming (NGP) was proposed to construct the empirical model of the waste gas temperature and the bed pressure drop in the sintering stage. The least square method (LSM) and M-estimator were adopted in NGP to improve the ability to compute and resist disturbance. Simulation results show the superiority of the proposed method.</description><identifier>ISSN: 1006-706X</identifier><identifier>EISSN: 2210-3988</identifier><identifier>DOI: 10.1016/S1006-706X(10)60188-4</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Applied and Technical Physics ; burn-through point ; Clustering ; Empirical analysis ; Engineering ; genetic programming ; Genetics ; Iron and steel industry ; K-means clustering ; Machines ; Manufacturing ; Materials Engineering ; Materials Science ; Mathematical models ; Metallic Materials ; Physical Chemistry ; Pressure drop ; Processes ; Programming ; Sintering ; 均值聚类 ; 数据驱动 ; 最小二乘法 ; 烧结过程 ; 遗传程序设计</subject><ispartof>Journal of iron and steel research, international, 2010-12, Vol.17 (12), p.1-5</ispartof><rights>2010 Central Iron and Steel Research Institute</rights><rights>China Iron and Steel Research Institute Group 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-390979956ce5a385bc90b353f8ffa6ff7a08d2ef5014e31ff581c539f92ebb9f3</citedby><cites>FETCH-LOGICAL-c481t-390979956ce5a385bc90b353f8ffa6ff7a08d2ef5014e31ff581c539f92ebb9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86787X/86787X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/S1006-706X(10)60188-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1006-706X(10)60188-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,41493,42562,46000,51324</link.rule.ids></links><search><creatorcontrib>SHANG, Xiu-qin</creatorcontrib><creatorcontrib>LU, Jian-gang</creatorcontrib><creatorcontrib>SUN, You-xian</creatorcontrib><creatorcontrib>LIU, Jun</creatorcontrib><creatorcontrib>YING, Yu-qian</creatorcontrib><title>Data-Driven Prediction of Sintering Burn-Through Point Based on Novel Genetic Programming</title><title>Journal of iron and steel research, international</title><addtitle>J. Iron Steel Res. Int</addtitle><addtitle>Journal of Iron and Steel Research</addtitle><description>An empirical dynamic model of burn-through point (BTP) in sintering process was developed. The K-means clustering was used to feed distribution according to the cold bed permeability, which was estimated by the superficial gas velocity in the cold stage. For each clustering, a novel genetic programming (NGP) was proposed to construct the empirical model of the waste gas temperature and the bed pressure drop in the sintering stage. The least square method (LSM) and M-estimator were adopted in NGP to improve the ability to compute and resist disturbance. Simulation results show the superiority of the proposed method.</description><subject>Applied and Technical Physics</subject><subject>burn-through point</subject><subject>Clustering</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>genetic programming</subject><subject>Genetics</subject><subject>Iron and steel industry</subject><subject>K-means clustering</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Physical Chemistry</subject><subject>Pressure drop</subject><subject>Processes</subject><subject>Programming</subject><subject>Sintering</subject><subject>均值聚类</subject><subject>数据驱动</subject><subject>最小二乘法</subject><subject>烧结过程</subject><subject>遗传程序设计</subject><issn>1006-706X</issn><issn>2210-3988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWNRHEAY36mI0mcykyUr8rYKoYAVdhUx606ZOk5pMC769mba4bTYXLuec3PMhdEzwBcGEXb4TjFnex-zzjOBzhgnnebmDekVBcE4F57uo9y_ZR0cxTnH3BKMF76GvO9Wq_C7YJbjsLcDI6tZ6l3mTvVvXQrBunN0sgsuHk-AX40n25tM-u1ERRlkSvvglNNkAHLRWpwQ_Dmo2S65DtGdUE-FoMw_Qx8P98PYxf34dPN1eP-e65KRNJ2LRF6JiGipFeVVrgWtaUcONUcyYvsJ8VICpMCmBEmMqTnRFhREF1LUw9ACdrnPnwf8sILZyZqOGplEO_CJKzkoqGOEsKau1UgcfYwAj58HOVPiVBMsOplzBlB2pbrWCKcvkY2tfnHc4IMipT0RSqa3Gq7URUv-lTcaoLTidKAfQrRx5uzXhZHPyxLvxT_pd1kp_G9uApKlUvygE_QNRgZgo</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>SHANG, Xiu-qin</creator><creator>LU, Jian-gang</creator><creator>SUN, You-xian</creator><creator>LIU, Jun</creator><creator>YING, Yu-qian</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20101201</creationdate><title>Data-Driven Prediction of Sintering Burn-Through Point Based on Novel Genetic Programming</title><author>SHANG, Xiu-qin ; LU, Jian-gang ; SUN, You-xian ; LIU, Jun ; YING, Yu-qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-390979956ce5a385bc90b353f8ffa6ff7a08d2ef5014e31ff581c539f92ebb9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied and Technical Physics</topic><topic>burn-through point</topic><topic>Clustering</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>genetic programming</topic><topic>Genetics</topic><topic>Iron and steel industry</topic><topic>K-means clustering</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Physical Chemistry</topic><topic>Pressure drop</topic><topic>Processes</topic><topic>Programming</topic><topic>Sintering</topic><topic>均值聚类</topic><topic>数据驱动</topic><topic>最小二乘法</topic><topic>烧结过程</topic><topic>遗传程序设计</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHANG, Xiu-qin</creatorcontrib><creatorcontrib>LU, Jian-gang</creatorcontrib><creatorcontrib>SUN, You-xian</creatorcontrib><creatorcontrib>LIU, Jun</creatorcontrib><creatorcontrib>YING, Yu-qian</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of iron and steel research, international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHANG, Xiu-qin</au><au>LU, Jian-gang</au><au>SUN, You-xian</au><au>LIU, Jun</au><au>YING, Yu-qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Prediction of Sintering Burn-Through Point Based on Novel Genetic Programming</atitle><jtitle>Journal of iron and steel research, international</jtitle><stitle>J. Iron Steel Res. Int</stitle><addtitle>Journal of Iron and Steel Research</addtitle><date>2010-12-01</date><risdate>2010</risdate><volume>17</volume><issue>12</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1006-706X</issn><eissn>2210-3988</eissn><abstract>An empirical dynamic model of burn-through point (BTP) in sintering process was developed. The K-means clustering was used to feed distribution according to the cold bed permeability, which was estimated by the superficial gas velocity in the cold stage. For each clustering, a novel genetic programming (NGP) was proposed to construct the empirical model of the waste gas temperature and the bed pressure drop in the sintering stage. The least square method (LSM) and M-estimator were adopted in NGP to improve the ability to compute and resist disturbance. Simulation results show the superiority of the proposed method.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1006-706X(10)60188-4</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-706X |
ispartof | Journal of iron and steel research, international, 2010-12, Vol.17 (12), p.1-5 |
issn | 1006-706X 2210-3988 |
language | eng |
recordid | cdi_proquest_miscellaneous_864396186 |
source | SpringerNature Journals; Access via ScienceDirect (Elsevier); Alma/SFX Local Collection |
subjects | Applied and Technical Physics burn-through point Clustering Empirical analysis Engineering genetic programming Genetics Iron and steel industry K-means clustering Machines Manufacturing Materials Engineering Materials Science Mathematical models Metallic Materials Physical Chemistry Pressure drop Processes Programming Sintering 均值聚类 数据驱动 最小二乘法 烧结过程 遗传程序设计 |
title | Data-Driven Prediction of Sintering Burn-Through Point Based on Novel Genetic Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Prediction%20of%20Sintering%20Burn-Through%20Point%20Based%20on%20Novel%20Genetic%20Programming&rft.jtitle=Journal%20of%20iron%20and%20steel%20research,%20international&rft.au=SHANG,%20Xiu-qin&rft.date=2010-12-01&rft.volume=17&rft.issue=12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1006-706X&rft.eissn=2210-3988&rft_id=info:doi/10.1016/S1006-706X(10)60188-4&rft_dat=%3Cproquest_cross%3E864396186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864396186&rft_id=info:pmid/&rft_cqvip_id=36187229&rft_els_id=S1006706X10601884&rfr_iscdi=true |