Data-Driven Prediction of Sintering Burn-Through Point Based on Novel Genetic Programming

An empirical dynamic model of burn-through point (BTP) in sintering process was developed. The K-means clustering was used to feed distribution according to the cold bed permeability, which was estimated by the superficial gas velocity in the cold stage. For each clustering, a novel genetic programm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of iron and steel research, international international, 2010-12, Vol.17 (12), p.1-5
Hauptverfasser: SHANG, Xiu-qin, LU, Jian-gang, SUN, You-xian, LIU, Jun, YING, Yu-qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 12
container_start_page 1
container_title Journal of iron and steel research, international
container_volume 17
creator SHANG, Xiu-qin
LU, Jian-gang
SUN, You-xian
LIU, Jun
YING, Yu-qian
description An empirical dynamic model of burn-through point (BTP) in sintering process was developed. The K-means clustering was used to feed distribution according to the cold bed permeability, which was estimated by the superficial gas velocity in the cold stage. For each clustering, a novel genetic programming (NGP) was proposed to construct the empirical model of the waste gas temperature and the bed pressure drop in the sintering stage. The least square method (LSM) and M-estimator were adopted in NGP to improve the ability to compute and resist disturbance. Simulation results show the superiority of the proposed method.
doi_str_mv 10.1016/S1006-706X(10)60188-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864396186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>36187229</cqvip_id><els_id>S1006706X10601884</els_id><sourcerecordid>864396186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-390979956ce5a385bc90b353f8ffa6ff7a08d2ef5014e31ff581c539f92ebb9f3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWNRHEAY36mI0mcykyUr8rYKoYAVdhUx606ZOk5pMC769mba4bTYXLuec3PMhdEzwBcGEXb4TjFnex-zzjOBzhgnnebmDekVBcE4F57uo9y_ZR0cxTnH3BKMF76GvO9Wq_C7YJbjsLcDI6tZ6l3mTvVvXQrBunN0sgsuHk-AX40n25tM-u1ERRlkSvvglNNkAHLRWpwQ_Dmo2S65DtGdUE-FoMw_Qx8P98PYxf34dPN1eP-e65KRNJ2LRF6JiGipFeVVrgWtaUcONUcyYvsJ8VICpMCmBEmMqTnRFhREF1LUw9ACdrnPnwf8sILZyZqOGplEO_CJKzkoqGOEsKau1UgcfYwAj58HOVPiVBMsOplzBlB2pbrWCKcvkY2tfnHc4IMipT0RSqa3Gq7URUv-lTcaoLTidKAfQrRx5uzXhZHPyxLvxT_pd1kp_G9uApKlUvygE_QNRgZgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864396186</pqid></control><display><type>article</type><title>Data-Driven Prediction of Sintering Burn-Through Point Based on Novel Genetic Programming</title><source>SpringerNature Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>SHANG, Xiu-qin ; LU, Jian-gang ; SUN, You-xian ; LIU, Jun ; YING, Yu-qian</creator><creatorcontrib>SHANG, Xiu-qin ; LU, Jian-gang ; SUN, You-xian ; LIU, Jun ; YING, Yu-qian</creatorcontrib><description>An empirical dynamic model of burn-through point (BTP) in sintering process was developed. The K-means clustering was used to feed distribution according to the cold bed permeability, which was estimated by the superficial gas velocity in the cold stage. For each clustering, a novel genetic programming (NGP) was proposed to construct the empirical model of the waste gas temperature and the bed pressure drop in the sintering stage. The least square method (LSM) and M-estimator were adopted in NGP to improve the ability to compute and resist disturbance. Simulation results show the superiority of the proposed method.</description><identifier>ISSN: 1006-706X</identifier><identifier>EISSN: 2210-3988</identifier><identifier>DOI: 10.1016/S1006-706X(10)60188-4</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Applied and Technical Physics ; burn-through point ; Clustering ; Empirical analysis ; Engineering ; genetic programming ; Genetics ; Iron and steel industry ; K-means clustering ; Machines ; Manufacturing ; Materials Engineering ; Materials Science ; Mathematical models ; Metallic Materials ; Physical Chemistry ; Pressure drop ; Processes ; Programming ; Sintering ; 均值聚类 ; 数据驱动 ; 最小二乘法 ; 烧结过程 ; 遗传程序设计</subject><ispartof>Journal of iron and steel research, international, 2010-12, Vol.17 (12), p.1-5</ispartof><rights>2010 Central Iron and Steel Research Institute</rights><rights>China Iron and Steel Research Institute Group 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-390979956ce5a385bc90b353f8ffa6ff7a08d2ef5014e31ff581c539f92ebb9f3</citedby><cites>FETCH-LOGICAL-c481t-390979956ce5a385bc90b353f8ffa6ff7a08d2ef5014e31ff581c539f92ebb9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86787X/86787X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/S1006-706X(10)60188-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1006-706X(10)60188-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,41493,42562,46000,51324</link.rule.ids></links><search><creatorcontrib>SHANG, Xiu-qin</creatorcontrib><creatorcontrib>LU, Jian-gang</creatorcontrib><creatorcontrib>SUN, You-xian</creatorcontrib><creatorcontrib>LIU, Jun</creatorcontrib><creatorcontrib>YING, Yu-qian</creatorcontrib><title>Data-Driven Prediction of Sintering Burn-Through Point Based on Novel Genetic Programming</title><title>Journal of iron and steel research, international</title><addtitle>J. Iron Steel Res. Int</addtitle><addtitle>Journal of Iron and Steel Research</addtitle><description>An empirical dynamic model of burn-through point (BTP) in sintering process was developed. The K-means clustering was used to feed distribution according to the cold bed permeability, which was estimated by the superficial gas velocity in the cold stage. For each clustering, a novel genetic programming (NGP) was proposed to construct the empirical model of the waste gas temperature and the bed pressure drop in the sintering stage. The least square method (LSM) and M-estimator were adopted in NGP to improve the ability to compute and resist disturbance. Simulation results show the superiority of the proposed method.</description><subject>Applied and Technical Physics</subject><subject>burn-through point</subject><subject>Clustering</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>genetic programming</subject><subject>Genetics</subject><subject>Iron and steel industry</subject><subject>K-means clustering</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Physical Chemistry</subject><subject>Pressure drop</subject><subject>Processes</subject><subject>Programming</subject><subject>Sintering</subject><subject>均值聚类</subject><subject>数据驱动</subject><subject>最小二乘法</subject><subject>烧结过程</subject><subject>遗传程序设计</subject><issn>1006-706X</issn><issn>2210-3988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWNRHEAY36mI0mcykyUr8rYKoYAVdhUx606ZOk5pMC769mba4bTYXLuec3PMhdEzwBcGEXb4TjFnex-zzjOBzhgnnebmDekVBcE4F57uo9y_ZR0cxTnH3BKMF76GvO9Wq_C7YJbjsLcDI6tZ6l3mTvVvXQrBunN0sgsuHk-AX40n25tM-u1ERRlkSvvglNNkAHLRWpwQ_Dmo2S65DtGdUE-FoMw_Qx8P98PYxf34dPN1eP-e65KRNJ2LRF6JiGipFeVVrgWtaUcONUcyYvsJ8VICpMCmBEmMqTnRFhREF1LUw9ACdrnPnwf8sILZyZqOGplEO_CJKzkoqGOEsKau1UgcfYwAj58HOVPiVBMsOplzBlB2pbrWCKcvkY2tfnHc4IMipT0RSqa3Gq7URUv-lTcaoLTidKAfQrRx5uzXhZHPyxLvxT_pd1kp_G9uApKlUvygE_QNRgZgo</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>SHANG, Xiu-qin</creator><creator>LU, Jian-gang</creator><creator>SUN, You-xian</creator><creator>LIU, Jun</creator><creator>YING, Yu-qian</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20101201</creationdate><title>Data-Driven Prediction of Sintering Burn-Through Point Based on Novel Genetic Programming</title><author>SHANG, Xiu-qin ; LU, Jian-gang ; SUN, You-xian ; LIU, Jun ; YING, Yu-qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-390979956ce5a385bc90b353f8ffa6ff7a08d2ef5014e31ff581c539f92ebb9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied and Technical Physics</topic><topic>burn-through point</topic><topic>Clustering</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>genetic programming</topic><topic>Genetics</topic><topic>Iron and steel industry</topic><topic>K-means clustering</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Physical Chemistry</topic><topic>Pressure drop</topic><topic>Processes</topic><topic>Programming</topic><topic>Sintering</topic><topic>均值聚类</topic><topic>数据驱动</topic><topic>最小二乘法</topic><topic>烧结过程</topic><topic>遗传程序设计</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHANG, Xiu-qin</creatorcontrib><creatorcontrib>LU, Jian-gang</creatorcontrib><creatorcontrib>SUN, You-xian</creatorcontrib><creatorcontrib>LIU, Jun</creatorcontrib><creatorcontrib>YING, Yu-qian</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of iron and steel research, international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHANG, Xiu-qin</au><au>LU, Jian-gang</au><au>SUN, You-xian</au><au>LIU, Jun</au><au>YING, Yu-qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Prediction of Sintering Burn-Through Point Based on Novel Genetic Programming</atitle><jtitle>Journal of iron and steel research, international</jtitle><stitle>J. Iron Steel Res. Int</stitle><addtitle>Journal of Iron and Steel Research</addtitle><date>2010-12-01</date><risdate>2010</risdate><volume>17</volume><issue>12</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1006-706X</issn><eissn>2210-3988</eissn><abstract>An empirical dynamic model of burn-through point (BTP) in sintering process was developed. The K-means clustering was used to feed distribution according to the cold bed permeability, which was estimated by the superficial gas velocity in the cold stage. For each clustering, a novel genetic programming (NGP) was proposed to construct the empirical model of the waste gas temperature and the bed pressure drop in the sintering stage. The least square method (LSM) and M-estimator were adopted in NGP to improve the ability to compute and resist disturbance. Simulation results show the superiority of the proposed method.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1006-706X(10)60188-4</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1006-706X
ispartof Journal of iron and steel research, international, 2010-12, Vol.17 (12), p.1-5
issn 1006-706X
2210-3988
language eng
recordid cdi_proquest_miscellaneous_864396186
source SpringerNature Journals; Access via ScienceDirect (Elsevier); Alma/SFX Local Collection
subjects Applied and Technical Physics
burn-through point
Clustering
Empirical analysis
Engineering
genetic programming
Genetics
Iron and steel industry
K-means clustering
Machines
Manufacturing
Materials Engineering
Materials Science
Mathematical models
Metallic Materials
Physical Chemistry
Pressure drop
Processes
Programming
Sintering
均值聚类
数据驱动
最小二乘法
烧结过程
遗传程序设计
title Data-Driven Prediction of Sintering Burn-Through Point Based on Novel Genetic Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Prediction%20of%20Sintering%20Burn-Through%20Point%20Based%20on%20Novel%20Genetic%20Programming&rft.jtitle=Journal%20of%20iron%20and%20steel%20research,%20international&rft.au=SHANG,%20Xiu-qin&rft.date=2010-12-01&rft.volume=17&rft.issue=12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1006-706X&rft.eissn=2210-3988&rft_id=info:doi/10.1016/S1006-706X(10)60188-4&rft_dat=%3Cproquest_cross%3E864396186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864396186&rft_id=info:pmid/&rft_cqvip_id=36187229&rft_els_id=S1006706X10601884&rfr_iscdi=true