Using 5-isogenies to quintuple points on elliptic curves
► Point multiplication is a key computation in elliptic curve cryptography. ► Isogenies have been used to double and triple points efficiently. ► We use 5-isogenies to find formulas for quintupling a point. ► In special cases, this technique is competitive with other methods. ► It is unlikely higher...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2011-03, Vol.111 (7), p.314-317 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 317 |
---|---|
container_issue | 7 |
container_start_page | 314 |
container_title | Information processing letters |
container_volume | 111 |
creator | Moody, Dustin |
description | ► Point multiplication is a key computation in elliptic curve cryptography. ► Isogenies have been used to double and triple points efficiently. ► We use 5-isogenies to find formulas for quintupling a point. ► In special cases, this technique is competitive with other methods. ► It is unlikely higher degree isogenies can be efficiently utilized.
Finding multiples of points on elliptic curves is the most important computation in elliptic curve cryptography. Extending the work of C. Doche, T. Icart, and D. Kohel (Efficient scalar multiplication by isogeny decomposition, in: M. Yung, Y. Dodis, A. Kiayias, T.G. Malkin (Eds.), Public Key Cryptography 2006, in: Lecture Notes in Comput. Sci., vol. 3958, Springer, Heidelberg, 2006, pp. 191–206) we use 5-isogenies to compute multiples of a point on an elliptic curve. Specifically, we find explicit formulas for quintupling a point. We compare the results with other published formulas for quintupling. We find that when the point is represented in Jacobian coordinates with
z
=
1
, our method is potentially among the fastest on specially chosen elliptic curves. We also see that using
l-isogenies to compute the multiplication by
l map (for
l larger than five) is unlikely to be more efficient than other techniques. |
doi_str_mv | 10.1016/j.ipl.2010.12.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864395900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019010004126</els_id><sourcerecordid>864395900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-a080cc592b117b22241e8d32ec507c50b9b9e6c15832586247621bfff20c51c93</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG9FEE-tM-lXgidZ_IIFL-45tNnpkqXbdJN2wX9vyi4ePHgISeCZd2Yexm4REgQsHreJ6duEw_TnCWB2xmYoSh4XiPKczQA4xIASLtmV91sAKLK0nDGx8qbbRHlsvN1QZ8hHg432o-mGsW8p6m14-ch2EbWt6QejIz26A_lrdtFUraeb0z1nq9eXr8V7vPx8-1g8L2OdimKIKxCgdS55jVjWnPMMSaxTTjqHMpxa1pIKjblIeS4KnpUFx7ppGg46Ry3TOXs45vbO7kfyg9oZr8MwVUd29EqEPWQuAQJ594fc2tF1YTglMhnSy3SKwyOknfXeUaN6Z3aV-1YIajKptiqYVJNJhVwFk6Hm_hRceV21jas6bfxvIQ-LYpaVgXs6chR8HAw55bWhTtPaONKDWlvzT5cfwCyGRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849258739</pqid></control><display><type>article</type><title>Using 5-isogenies to quintuple points on elliptic curves</title><source>Elsevier ScienceDirect Journals</source><creator>Moody, Dustin</creator><creatorcontrib>Moody, Dustin</creatorcontrib><description>► Point multiplication is a key computation in elliptic curve cryptography. ► Isogenies have been used to double and triple points efficiently. ► We use 5-isogenies to find formulas for quintupling a point. ► In special cases, this technique is competitive with other methods. ► It is unlikely higher degree isogenies can be efficiently utilized.
Finding multiples of points on elliptic curves is the most important computation in elliptic curve cryptography. Extending the work of C. Doche, T. Icart, and D. Kohel (Efficient scalar multiplication by isogeny decomposition, in: M. Yung, Y. Dodis, A. Kiayias, T.G. Malkin (Eds.), Public Key Cryptography 2006, in: Lecture Notes in Comput. Sci., vol. 3958, Springer, Heidelberg, 2006, pp. 191–206) we use 5-isogenies to compute multiples of a point on an elliptic curve. Specifically, we find explicit formulas for quintupling a point. We compare the results with other published formulas for quintupling. We find that when the point is represented in Jacobian coordinates with
z
=
1
, our method is potentially among the fastest on specially chosen elliptic curves. We also see that using
l-isogenies to compute the multiplication by
l map (for
l larger than five) is unlikely to be more efficient than other techniques.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2010.12.014</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Algebraic geometry ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computation ; Computer science; control theory; systems ; Cryptography ; Decomposition ; Elliptic curves ; Exact sciences and technology ; Information processing ; Isogenies ; Jacobians ; Lectures ; Mathematical functions ; Mathematical models ; Mathematics ; Miscellaneous ; Multiplication ; Number theory ; Point multiplication ; Scalars ; Sciences and techniques of general use ; Studies ; Theoretical computing</subject><ispartof>Information processing letters, 2011-03, Vol.111 (7), p.314-317</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Mar 1, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-a080cc592b117b22241e8d32ec507c50b9b9e6c15832586247621bfff20c51c93</citedby><cites>FETCH-LOGICAL-c386t-a080cc592b117b22241e8d32ec507c50b9b9e6c15832586247621bfff20c51c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019010004126$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23861447$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moody, Dustin</creatorcontrib><title>Using 5-isogenies to quintuple points on elliptic curves</title><title>Information processing letters</title><description>► Point multiplication is a key computation in elliptic curve cryptography. ► Isogenies have been used to double and triple points efficiently. ► We use 5-isogenies to find formulas for quintupling a point. ► In special cases, this technique is competitive with other methods. ► It is unlikely higher degree isogenies can be efficiently utilized.
Finding multiples of points on elliptic curves is the most important computation in elliptic curve cryptography. Extending the work of C. Doche, T. Icart, and D. Kohel (Efficient scalar multiplication by isogeny decomposition, in: M. Yung, Y. Dodis, A. Kiayias, T.G. Malkin (Eds.), Public Key Cryptography 2006, in: Lecture Notes in Comput. Sci., vol. 3958, Springer, Heidelberg, 2006, pp. 191–206) we use 5-isogenies to compute multiples of a point on an elliptic curve. Specifically, we find explicit formulas for quintupling a point. We compare the results with other published formulas for quintupling. We find that when the point is represented in Jacobian coordinates with
z
=
1
, our method is potentially among the fastest on specially chosen elliptic curves. We also see that using
l-isogenies to compute the multiplication by
l map (for
l larger than five) is unlikely to be more efficient than other techniques.</description><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Cryptography</subject><subject>Decomposition</subject><subject>Elliptic curves</subject><subject>Exact sciences and technology</subject><subject>Information processing</subject><subject>Isogenies</subject><subject>Jacobians</subject><subject>Lectures</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Multiplication</subject><subject>Number theory</subject><subject>Point multiplication</subject><subject>Scalars</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG9FEE-tM-lXgidZ_IIFL-45tNnpkqXbdJN2wX9vyi4ePHgISeCZd2Yexm4REgQsHreJ6duEw_TnCWB2xmYoSh4XiPKczQA4xIASLtmV91sAKLK0nDGx8qbbRHlsvN1QZ8hHg432o-mGsW8p6m14-ch2EbWt6QejIz26A_lrdtFUraeb0z1nq9eXr8V7vPx8-1g8L2OdimKIKxCgdS55jVjWnPMMSaxTTjqHMpxa1pIKjblIeS4KnpUFx7ppGg46Ry3TOXs45vbO7kfyg9oZr8MwVUd29EqEPWQuAQJ594fc2tF1YTglMhnSy3SKwyOknfXeUaN6Z3aV-1YIajKptiqYVJNJhVwFk6Hm_hRceV21jas6bfxvIQ-LYpaVgXs6chR8HAw55bWhTtPaONKDWlvzT5cfwCyGRw</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Moody, Dustin</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Using 5-isogenies to quintuple points on elliptic curves</title><author>Moody, Dustin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-a080cc592b117b22241e8d32ec507c50b9b9e6c15832586247621bfff20c51c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Cryptography</topic><topic>Decomposition</topic><topic>Elliptic curves</topic><topic>Exact sciences and technology</topic><topic>Information processing</topic><topic>Isogenies</topic><topic>Jacobians</topic><topic>Lectures</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Multiplication</topic><topic>Number theory</topic><topic>Point multiplication</topic><topic>Scalars</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moody, Dustin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moody, Dustin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using 5-isogenies to quintuple points on elliptic curves</atitle><jtitle>Information processing letters</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>111</volume><issue>7</issue><spage>314</spage><epage>317</epage><pages>314-317</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>► Point multiplication is a key computation in elliptic curve cryptography. ► Isogenies have been used to double and triple points efficiently. ► We use 5-isogenies to find formulas for quintupling a point. ► In special cases, this technique is competitive with other methods. ► It is unlikely higher degree isogenies can be efficiently utilized.
Finding multiples of points on elliptic curves is the most important computation in elliptic curve cryptography. Extending the work of C. Doche, T. Icart, and D. Kohel (Efficient scalar multiplication by isogeny decomposition, in: M. Yung, Y. Dodis, A. Kiayias, T.G. Malkin (Eds.), Public Key Cryptography 2006, in: Lecture Notes in Comput. Sci., vol. 3958, Springer, Heidelberg, 2006, pp. 191–206) we use 5-isogenies to compute multiples of a point on an elliptic curve. Specifically, we find explicit formulas for quintupling a point. We compare the results with other published formulas for quintupling. We find that when the point is represented in Jacobian coordinates with
z
=
1
, our method is potentially among the fastest on specially chosen elliptic curves. We also see that using
l-isogenies to compute the multiplication by
l map (for
l larger than five) is unlikely to be more efficient than other techniques.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2010.12.014</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0190 |
ispartof | Information processing letters, 2011-03, Vol.111 (7), p.314-317 |
issn | 0020-0190 1872-6119 |
language | eng |
recordid | cdi_proquest_miscellaneous_864395900 |
source | Elsevier ScienceDirect Journals |
subjects | Algebra Algebraic geometry Algorithmics. Computability. Computer arithmetics Applied sciences Computation Computer science control theory systems Cryptography Decomposition Elliptic curves Exact sciences and technology Information processing Isogenies Jacobians Lectures Mathematical functions Mathematical models Mathematics Miscellaneous Multiplication Number theory Point multiplication Scalars Sciences and techniques of general use Studies Theoretical computing |
title | Using 5-isogenies to quintuple points on elliptic curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A13%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%205-isogenies%20to%20quintuple%20points%20on%20elliptic%20curves&rft.jtitle=Information%20processing%20letters&rft.au=Moody,%20Dustin&rft.date=2011-03-01&rft.volume=111&rft.issue=7&rft.spage=314&rft.epage=317&rft.pages=314-317&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2010.12.014&rft_dat=%3Cproquest_cross%3E864395900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849258739&rft_id=info:pmid/&rft_els_id=S0020019010004126&rfr_iscdi=true |