Using 5-isogenies to quintuple points on elliptic curves

► Point multiplication is a key computation in elliptic curve cryptography. ► Isogenies have been used to double and triple points efficiently. ► We use 5-isogenies to find formulas for quintupling a point. ► In special cases, this technique is competitive with other methods. ► It is unlikely higher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2011-03, Vol.111 (7), p.314-317
1. Verfasser: Moody, Dustin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue 7
container_start_page 314
container_title Information processing letters
container_volume 111
creator Moody, Dustin
description ► Point multiplication is a key computation in elliptic curve cryptography. ► Isogenies have been used to double and triple points efficiently. ► We use 5-isogenies to find formulas for quintupling a point. ► In special cases, this technique is competitive with other methods. ► It is unlikely higher degree isogenies can be efficiently utilized. Finding multiples of points on elliptic curves is the most important computation in elliptic curve cryptography. Extending the work of C. Doche, T. Icart, and D. Kohel (Efficient scalar multiplication by isogeny decomposition, in: M. Yung, Y. Dodis, A. Kiayias, T.G. Malkin (Eds.), Public Key Cryptography 2006, in: Lecture Notes in Comput. Sci., vol. 3958, Springer, Heidelberg, 2006, pp. 191–206) we use 5-isogenies to compute multiples of a point on an elliptic curve. Specifically, we find explicit formulas for quintupling a point. We compare the results with other published formulas for quintupling. We find that when the point is represented in Jacobian coordinates with z = 1 , our method is potentially among the fastest on specially chosen elliptic curves. We also see that using l-isogenies to compute the multiplication by l map (for l larger than five) is unlikely to be more efficient than other techniques.
doi_str_mv 10.1016/j.ipl.2010.12.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864395900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019010004126</els_id><sourcerecordid>864395900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-a080cc592b117b22241e8d32ec507c50b9b9e6c15832586247621bfff20c51c93</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG9FEE-tM-lXgidZ_IIFL-45tNnpkqXbdJN2wX9vyi4ePHgISeCZd2Yexm4REgQsHreJ6duEw_TnCWB2xmYoSh4XiPKczQA4xIASLtmV91sAKLK0nDGx8qbbRHlsvN1QZ8hHg432o-mGsW8p6m14-ch2EbWt6QejIz26A_lrdtFUraeb0z1nq9eXr8V7vPx8-1g8L2OdimKIKxCgdS55jVjWnPMMSaxTTjqHMpxa1pIKjblIeS4KnpUFx7ppGg46Ry3TOXs45vbO7kfyg9oZr8MwVUd29EqEPWQuAQJ594fc2tF1YTglMhnSy3SKwyOknfXeUaN6Z3aV-1YIajKptiqYVJNJhVwFk6Hm_hRceV21jas6bfxvIQ-LYpaVgXs6chR8HAw55bWhTtPaONKDWlvzT5cfwCyGRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849258739</pqid></control><display><type>article</type><title>Using 5-isogenies to quintuple points on elliptic curves</title><source>Elsevier ScienceDirect Journals</source><creator>Moody, Dustin</creator><creatorcontrib>Moody, Dustin</creatorcontrib><description>► Point multiplication is a key computation in elliptic curve cryptography. ► Isogenies have been used to double and triple points efficiently. ► We use 5-isogenies to find formulas for quintupling a point. ► In special cases, this technique is competitive with other methods. ► It is unlikely higher degree isogenies can be efficiently utilized. Finding multiples of points on elliptic curves is the most important computation in elliptic curve cryptography. Extending the work of C. Doche, T. Icart, and D. Kohel (Efficient scalar multiplication by isogeny decomposition, in: M. Yung, Y. Dodis, A. Kiayias, T.G. Malkin (Eds.), Public Key Cryptography 2006, in: Lecture Notes in Comput. Sci., vol. 3958, Springer, Heidelberg, 2006, pp. 191–206) we use 5-isogenies to compute multiples of a point on an elliptic curve. Specifically, we find explicit formulas for quintupling a point. We compare the results with other published formulas for quintupling. We find that when the point is represented in Jacobian coordinates with z = 1 , our method is potentially among the fastest on specially chosen elliptic curves. We also see that using l-isogenies to compute the multiplication by l map (for l larger than five) is unlikely to be more efficient than other techniques.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2010.12.014</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Algebraic geometry ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computation ; Computer science; control theory; systems ; Cryptography ; Decomposition ; Elliptic curves ; Exact sciences and technology ; Information processing ; Isogenies ; Jacobians ; Lectures ; Mathematical functions ; Mathematical models ; Mathematics ; Miscellaneous ; Multiplication ; Number theory ; Point multiplication ; Scalars ; Sciences and techniques of general use ; Studies ; Theoretical computing</subject><ispartof>Information processing letters, 2011-03, Vol.111 (7), p.314-317</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Mar 1, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-a080cc592b117b22241e8d32ec507c50b9b9e6c15832586247621bfff20c51c93</citedby><cites>FETCH-LOGICAL-c386t-a080cc592b117b22241e8d32ec507c50b9b9e6c15832586247621bfff20c51c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019010004126$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23861447$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moody, Dustin</creatorcontrib><title>Using 5-isogenies to quintuple points on elliptic curves</title><title>Information processing letters</title><description>► Point multiplication is a key computation in elliptic curve cryptography. ► Isogenies have been used to double and triple points efficiently. ► We use 5-isogenies to find formulas for quintupling a point. ► In special cases, this technique is competitive with other methods. ► It is unlikely higher degree isogenies can be efficiently utilized. Finding multiples of points on elliptic curves is the most important computation in elliptic curve cryptography. Extending the work of C. Doche, T. Icart, and D. Kohel (Efficient scalar multiplication by isogeny decomposition, in: M. Yung, Y. Dodis, A. Kiayias, T.G. Malkin (Eds.), Public Key Cryptography 2006, in: Lecture Notes in Comput. Sci., vol. 3958, Springer, Heidelberg, 2006, pp. 191–206) we use 5-isogenies to compute multiples of a point on an elliptic curve. Specifically, we find explicit formulas for quintupling a point. We compare the results with other published formulas for quintupling. We find that when the point is represented in Jacobian coordinates with z = 1 , our method is potentially among the fastest on specially chosen elliptic curves. We also see that using l-isogenies to compute the multiplication by l map (for l larger than five) is unlikely to be more efficient than other techniques.</description><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Cryptography</subject><subject>Decomposition</subject><subject>Elliptic curves</subject><subject>Exact sciences and technology</subject><subject>Information processing</subject><subject>Isogenies</subject><subject>Jacobians</subject><subject>Lectures</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Multiplication</subject><subject>Number theory</subject><subject>Point multiplication</subject><subject>Scalars</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG9FEE-tM-lXgidZ_IIFL-45tNnpkqXbdJN2wX9vyi4ePHgISeCZd2Yexm4REgQsHreJ6duEw_TnCWB2xmYoSh4XiPKczQA4xIASLtmV91sAKLK0nDGx8qbbRHlsvN1QZ8hHg432o-mGsW8p6m14-ch2EbWt6QejIz26A_lrdtFUraeb0z1nq9eXr8V7vPx8-1g8L2OdimKIKxCgdS55jVjWnPMMSaxTTjqHMpxa1pIKjblIeS4KnpUFx7ppGg46Ry3TOXs45vbO7kfyg9oZr8MwVUd29EqEPWQuAQJ594fc2tF1YTglMhnSy3SKwyOknfXeUaN6Z3aV-1YIajKptiqYVJNJhVwFk6Hm_hRceV21jas6bfxvIQ-LYpaVgXs6chR8HAw55bWhTtPaONKDWlvzT5cfwCyGRw</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Moody, Dustin</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Using 5-isogenies to quintuple points on elliptic curves</title><author>Moody, Dustin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-a080cc592b117b22241e8d32ec507c50b9b9e6c15832586247621bfff20c51c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Cryptography</topic><topic>Decomposition</topic><topic>Elliptic curves</topic><topic>Exact sciences and technology</topic><topic>Information processing</topic><topic>Isogenies</topic><topic>Jacobians</topic><topic>Lectures</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Multiplication</topic><topic>Number theory</topic><topic>Point multiplication</topic><topic>Scalars</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moody, Dustin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moody, Dustin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using 5-isogenies to quintuple points on elliptic curves</atitle><jtitle>Information processing letters</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>111</volume><issue>7</issue><spage>314</spage><epage>317</epage><pages>314-317</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>► Point multiplication is a key computation in elliptic curve cryptography. ► Isogenies have been used to double and triple points efficiently. ► We use 5-isogenies to find formulas for quintupling a point. ► In special cases, this technique is competitive with other methods. ► It is unlikely higher degree isogenies can be efficiently utilized. Finding multiples of points on elliptic curves is the most important computation in elliptic curve cryptography. Extending the work of C. Doche, T. Icart, and D. Kohel (Efficient scalar multiplication by isogeny decomposition, in: M. Yung, Y. Dodis, A. Kiayias, T.G. Malkin (Eds.), Public Key Cryptography 2006, in: Lecture Notes in Comput. Sci., vol. 3958, Springer, Heidelberg, 2006, pp. 191–206) we use 5-isogenies to compute multiples of a point on an elliptic curve. Specifically, we find explicit formulas for quintupling a point. We compare the results with other published formulas for quintupling. We find that when the point is represented in Jacobian coordinates with z = 1 , our method is potentially among the fastest on specially chosen elliptic curves. We also see that using l-isogenies to compute the multiplication by l map (for l larger than five) is unlikely to be more efficient than other techniques.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2010.12.014</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2011-03, Vol.111 (7), p.314-317
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_miscellaneous_864395900
source Elsevier ScienceDirect Journals
subjects Algebra
Algebraic geometry
Algorithmics. Computability. Computer arithmetics
Applied sciences
Computation
Computer science
control theory
systems
Cryptography
Decomposition
Elliptic curves
Exact sciences and technology
Information processing
Isogenies
Jacobians
Lectures
Mathematical functions
Mathematical models
Mathematics
Miscellaneous
Multiplication
Number theory
Point multiplication
Scalars
Sciences and techniques of general use
Studies
Theoretical computing
title Using 5-isogenies to quintuple points on elliptic curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A13%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%205-isogenies%20to%20quintuple%20points%20on%20elliptic%20curves&rft.jtitle=Information%20processing%20letters&rft.au=Moody,%20Dustin&rft.date=2011-03-01&rft.volume=111&rft.issue=7&rft.spage=314&rft.epage=317&rft.pages=314-317&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2010.12.014&rft_dat=%3Cproquest_cross%3E864395900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849258739&rft_id=info:pmid/&rft_els_id=S0020019010004126&rfr_iscdi=true