Application of artificial neural networks in linear profile monitoring

► Three ANN based methods for monitoring linear profiles are proposed. ► Proposed methods perform better than T2, EWMA/R and EWMA-3 charts for medium to large shifts. ► A advantage of proposed ANN methods is to train the neural networks to detect desired shifts. ► ARL criterion is used to assess the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2011-05, Vol.38 (5), p.4920-4928
Hauptverfasser: Hosseinifard, S.Z., Abdollahian, M., Zeephongsekul, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4928
container_issue 5
container_start_page 4920
container_title Expert systems with applications
container_volume 38
creator Hosseinifard, S.Z.
Abdollahian, M.
Zeephongsekul, P.
description ► Three ANN based methods for monitoring linear profiles are proposed. ► Proposed methods perform better than T2, EWMA/R and EWMA-3 charts for medium to large shifts. ► A advantage of proposed ANN methods is to train the neural networks to detect desired shifts. ► ARL criterion is used to assess the efficiencies of the methods. ► Control charts are used to detect shifts in intercept, slope and residuals. In many quality control applications the quality of process or product is characterized and summarized by a relation (profile) between a response variable and one or more explanatory variables. Such profiles can be modeled using linear or nonlinear regression models. In this paper we use artificial neural networks to detect and classify the shifts in linear profiles. Three monitoring methods based on artificial neural networks are developed to monitor linear profiles. Their efficacies are assessed using average run length criterion.
doi_str_mv 10.1016/j.eswa.2010.09.160
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864395527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417410011176</els_id><sourcerecordid>864395527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-a1b840cd017ca80ab983b0236d73ffa2327c42cb8875b1ba6b65bb598f2eff113</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5iywZJwtmM7kViqigJSJRaYLduxkUsaBzsF8e9xKXOnk07fu3fvIXSNocKA-d2msulbVQTyAtoKczhBM9wIWnLR0lM0g5aJssaiPkcXKW0AsAAQM7RajGPvjZp8GIrgChUn77zxqi8Gu4t_Y_oO8SMVfih6P1gVizEG53tbbMPgpxD98H6Jzpzqk736n3P0tnp4XT6V65fH5-ViXRrK2VQqrJsaTJfdjWpA6bahGgjlnaDOKUKJMDUxumkE01grrjnTmrWNI9Y5jOkc3Rzu5hc-dzZNcuuTsX2vBht2STa8pi1jRGTy9iiZ82MAlo0ySg6oiSGlaJ0co9-q-CMxyH29ciP39cp9vRJamevNovuDyOa4X95GmYy3g7Gdj9ZMsgv-mPwXsR-ECA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701005875</pqid></control><display><type>article</type><title>Application of artificial neural networks in linear profile monitoring</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hosseinifard, S.Z. ; Abdollahian, M. ; Zeephongsekul, P.</creator><creatorcontrib>Hosseinifard, S.Z. ; Abdollahian, M. ; Zeephongsekul, P.</creatorcontrib><description>► Three ANN based methods for monitoring linear profiles are proposed. ► Proposed methods perform better than T2, EWMA/R and EWMA-3 charts for medium to large shifts. ► A advantage of proposed ANN methods is to train the neural networks to detect desired shifts. ► ARL criterion is used to assess the efficiencies of the methods. ► Control charts are used to detect shifts in intercept, slope and residuals. In many quality control applications the quality of process or product is characterized and summarized by a relation (profile) between a response variable and one or more explanatory variables. Such profiles can be modeled using linear or nonlinear regression models. In this paper we use artificial neural networks to detect and classify the shifts in linear profiles. Three monitoring methods based on artificial neural networks are developed to monitor linear profiles. Their efficacies are assessed using average run length criterion.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2010.09.160</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial neural networks ; Classification ; Effectiveness ; Expert systems ; Linear profile ; Linear regression ; Mathematical models ; Monitoring ; Monitors ; Neural networks ; Regression ; Statistical quality control</subject><ispartof>Expert systems with applications, 2011-05, Vol.38 (5), p.4920-4928</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-a1b840cd017ca80ab983b0236d73ffa2327c42cb8875b1ba6b65bb598f2eff113</citedby><cites>FETCH-LOGICAL-c365t-a1b840cd017ca80ab983b0236d73ffa2327c42cb8875b1ba6b65bb598f2eff113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417410011176$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Hosseinifard, S.Z.</creatorcontrib><creatorcontrib>Abdollahian, M.</creatorcontrib><creatorcontrib>Zeephongsekul, P.</creatorcontrib><title>Application of artificial neural networks in linear profile monitoring</title><title>Expert systems with applications</title><description>► Three ANN based methods for monitoring linear profiles are proposed. ► Proposed methods perform better than T2, EWMA/R and EWMA-3 charts for medium to large shifts. ► A advantage of proposed ANN methods is to train the neural networks to detect desired shifts. ► ARL criterion is used to assess the efficiencies of the methods. ► Control charts are used to detect shifts in intercept, slope and residuals. In many quality control applications the quality of process or product is characterized and summarized by a relation (profile) between a response variable and one or more explanatory variables. Such profiles can be modeled using linear or nonlinear regression models. In this paper we use artificial neural networks to detect and classify the shifts in linear profiles. Three monitoring methods based on artificial neural networks are developed to monitor linear profiles. Their efficacies are assessed using average run length criterion.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Effectiveness</subject><subject>Expert systems</subject><subject>Linear profile</subject><subject>Linear regression</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Monitors</subject><subject>Neural networks</subject><subject>Regression</subject><subject>Statistical quality control</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5iywZJwtmM7kViqigJSJRaYLduxkUsaBzsF8e9xKXOnk07fu3fvIXSNocKA-d2msulbVQTyAtoKczhBM9wIWnLR0lM0g5aJssaiPkcXKW0AsAAQM7RajGPvjZp8GIrgChUn77zxqi8Gu4t_Y_oO8SMVfih6P1gVizEG53tbbMPgpxD98H6Jzpzqk736n3P0tnp4XT6V65fH5-ViXRrK2VQqrJsaTJfdjWpA6bahGgjlnaDOKUKJMDUxumkE01grrjnTmrWNI9Y5jOkc3Rzu5hc-dzZNcuuTsX2vBht2STa8pi1jRGTy9iiZ82MAlo0ySg6oiSGlaJ0co9-q-CMxyH29ciP39cp9vRJamevNovuDyOa4X95GmYy3g7Gdj9ZMsgv-mPwXsR-ECA</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Hosseinifard, S.Z.</creator><creator>Abdollahian, M.</creator><creator>Zeephongsekul, P.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201105</creationdate><title>Application of artificial neural networks in linear profile monitoring</title><author>Hosseinifard, S.Z. ; Abdollahian, M. ; Zeephongsekul, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-a1b840cd017ca80ab983b0236d73ffa2327c42cb8875b1ba6b65bb598f2eff113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Effectiveness</topic><topic>Expert systems</topic><topic>Linear profile</topic><topic>Linear regression</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Monitors</topic><topic>Neural networks</topic><topic>Regression</topic><topic>Statistical quality control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseinifard, S.Z.</creatorcontrib><creatorcontrib>Abdollahian, M.</creatorcontrib><creatorcontrib>Zeephongsekul, P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseinifard, S.Z.</au><au>Abdollahian, M.</au><au>Zeephongsekul, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of artificial neural networks in linear profile monitoring</atitle><jtitle>Expert systems with applications</jtitle><date>2011-05</date><risdate>2011</risdate><volume>38</volume><issue>5</issue><spage>4920</spage><epage>4928</epage><pages>4920-4928</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► Three ANN based methods for monitoring linear profiles are proposed. ► Proposed methods perform better than T2, EWMA/R and EWMA-3 charts for medium to large shifts. ► A advantage of proposed ANN methods is to train the neural networks to detect desired shifts. ► ARL criterion is used to assess the efficiencies of the methods. ► Control charts are used to detect shifts in intercept, slope and residuals. In many quality control applications the quality of process or product is characterized and summarized by a relation (profile) between a response variable and one or more explanatory variables. Such profiles can be modeled using linear or nonlinear regression models. In this paper we use artificial neural networks to detect and classify the shifts in linear profiles. Three monitoring methods based on artificial neural networks are developed to monitor linear profiles. Their efficacies are assessed using average run length criterion.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2010.09.160</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2011-05, Vol.38 (5), p.4920-4928
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_864395527
source Elsevier ScienceDirect Journals Complete
subjects Artificial neural networks
Classification
Effectiveness
Expert systems
Linear profile
Linear regression
Mathematical models
Monitoring
Monitors
Neural networks
Regression
Statistical quality control
title Application of artificial neural networks in linear profile monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20artificial%20neural%20networks%20in%20linear%20profile%20monitoring&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Hosseinifard,%20S.Z.&rft.date=2011-05&rft.volume=38&rft.issue=5&rft.spage=4920&rft.epage=4928&rft.pages=4920-4928&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2010.09.160&rft_dat=%3Cproquest_cross%3E864395527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701005875&rft_id=info:pmid/&rft_els_id=S0957417410011176&rfr_iscdi=true