Resolving structural uncertainty in natural resources management using POMDP approaches

In recent years there has been a growing focus on the uncertainties of natural resources management, and the importance of accounting for uncertainty in assessing management effectiveness. This paper focuses on uncertainty in resource management in terms of discrete-state Markov decision processes (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological modelling 2011-03, Vol.222 (5), p.1092-1102
1. Verfasser: Williams, Byron K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1102
container_issue 5
container_start_page 1092
container_title Ecological modelling
container_volume 222
creator Williams, Byron K.
description In recent years there has been a growing focus on the uncertainties of natural resources management, and the importance of accounting for uncertainty in assessing management effectiveness. This paper focuses on uncertainty in resource management in terms of discrete-state Markov decision processes (MDP) under structural uncertainty and partial observability. It describes the treatment of structural uncertainty with approaches developed for partially observable resource systems. In particular, I show how value iteration for partially observable MDPs (POMDP) can be extended to structurally uncertain MDPs. A key difference between these process classes is that structurally uncertain MDPs require the tracking of system state as well as a probability structure for the structure uncertainty, whereas with POMDPs require only a probability structure for the observation uncertainty. The added complexity of the optimization problem under structural uncertainty is compensated by reduced dimensionality in the search for optimal strategy. A solution algorithm for structurally uncertain processes is outlined for a simple example in conservation biology. By building on the conceptual framework developed for POMDPs, natural resource analysts and decision makers who confront structural uncertainties in natural resources can take advantage of the rapid growth in POMDP methods and approaches, and thereby produce better conservation strategies over a larger class of resource problems.
doi_str_mv 10.1016/j.ecolmodel.2010.12.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864393469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380010006812</els_id><sourcerecordid>864393469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-803cca6b28f4296b263f5167148dbabebef3c5570abf92c76cd0288a82590d003</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVJoZu0vyG-lJ68HX1Ylo8hbdpCQkLb0KMYy-OtFlveSnZg_321OOSa08DwvO8MD2OXHLYcuP6835KbhnHqaNgKOG3FFnj1hm24qUVZg9BnbAMSVCkNwDt2ntIeALgwYsP-_KQ0DU8-7Io0x8XNS8ShWIKjOKMP87HwoQi4rmNml-goFSMG3NFIYS6WdAo_3N99eSjwcIgTur-U3rO3PQ6JPjzPC_Z48_X39ffy9v7bj-ur29IpXc-lAekc6laYXokmTy37iuuaK9O12FJLvXRVVQO2fSNcrV0Hwhg0omqgA5AX7NPamw__WyjNdvTJ0TBgoGlJ1mglG6l0k8l6JV2cUorU20P0I8aj5WBPJu3evpi0J5OWC5tN5uTH5xuYHA59xOB8eokLaZpK1yJzlyvX42RxFzPz-CsXqSxbG9WoTFytBGUlT56iTc5Tlt35SG623eRf_eY_6Q6YWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864393469</pqid></control><display><type>article</type><title>Resolving structural uncertainty in natural resources management using POMDP approaches</title><source>Access via ScienceDirect (Elsevier)</source><creator>Williams, Byron K.</creator><creatorcontrib>Williams, Byron K.</creatorcontrib><description>In recent years there has been a growing focus on the uncertainties of natural resources management, and the importance of accounting for uncertainty in assessing management effectiveness. This paper focuses on uncertainty in resource management in terms of discrete-state Markov decision processes (MDP) under structural uncertainty and partial observability. It describes the treatment of structural uncertainty with approaches developed for partially observable resource systems. In particular, I show how value iteration for partially observable MDPs (POMDP) can be extended to structurally uncertain MDPs. A key difference between these process classes is that structurally uncertain MDPs require the tracking of system state as well as a probability structure for the structure uncertainty, whereas with POMDPs require only a probability structure for the observation uncertainty. The added complexity of the optimization problem under structural uncertainty is compensated by reduced dimensionality in the search for optimal strategy. A solution algorithm for structurally uncertain processes is outlined for a simple example in conservation biology. By building on the conceptual framework developed for POMDPs, natural resource analysts and decision makers who confront structural uncertainties in natural resources can take advantage of the rapid growth in POMDP methods and approaches, and thereby produce better conservation strategies over a larger class of resource problems.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/j.ecolmodel.2010.12.015</identifier><identifier>CODEN: ECMODT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>algorithms ; Animal, plant and microbial ecology ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Markov decision process ; Methods and techniques (sampling, tagging, trapping, modelling...) ; natural resource management ; Natural resources ; Partial observability ; resource management ; Structural uncertainty ; system optimization ; uncertainty ; Value iteration</subject><ispartof>Ecological modelling, 2011-03, Vol.222 (5), p.1092-1102</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-803cca6b28f4296b263f5167148dbabebef3c5570abf92c76cd0288a82590d003</citedby><cites>FETCH-LOGICAL-c467t-803cca6b28f4296b263f5167148dbabebef3c5570abf92c76cd0288a82590d003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ecolmodel.2010.12.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23895672$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Byron K.</creatorcontrib><title>Resolving structural uncertainty in natural resources management using POMDP approaches</title><title>Ecological modelling</title><description>In recent years there has been a growing focus on the uncertainties of natural resources management, and the importance of accounting for uncertainty in assessing management effectiveness. This paper focuses on uncertainty in resource management in terms of discrete-state Markov decision processes (MDP) under structural uncertainty and partial observability. It describes the treatment of structural uncertainty with approaches developed for partially observable resource systems. In particular, I show how value iteration for partially observable MDPs (POMDP) can be extended to structurally uncertain MDPs. A key difference between these process classes is that structurally uncertain MDPs require the tracking of system state as well as a probability structure for the structure uncertainty, whereas with POMDPs require only a probability structure for the observation uncertainty. The added complexity of the optimization problem under structural uncertainty is compensated by reduced dimensionality in the search for optimal strategy. A solution algorithm for structurally uncertain processes is outlined for a simple example in conservation biology. By building on the conceptual framework developed for POMDPs, natural resource analysts and decision makers who confront structural uncertainties in natural resources can take advantage of the rapid growth in POMDP methods and approaches, and thereby produce better conservation strategies over a larger class of resource problems.</description><subject>algorithms</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Markov decision process</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>natural resource management</subject><subject>Natural resources</subject><subject>Partial observability</subject><subject>resource management</subject><subject>Structural uncertainty</subject><subject>system optimization</subject><subject>uncertainty</subject><subject>Value iteration</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVJoZu0vyG-lJ68HX1Ylo8hbdpCQkLb0KMYy-OtFlveSnZg_321OOSa08DwvO8MD2OXHLYcuP6835KbhnHqaNgKOG3FFnj1hm24qUVZg9BnbAMSVCkNwDt2ntIeALgwYsP-_KQ0DU8-7Io0x8XNS8ShWIKjOKMP87HwoQi4rmNml-goFSMG3NFIYS6WdAo_3N99eSjwcIgTur-U3rO3PQ6JPjzPC_Z48_X39ffy9v7bj-ur29IpXc-lAekc6laYXokmTy37iuuaK9O12FJLvXRVVQO2fSNcrV0Hwhg0omqgA5AX7NPamw__WyjNdvTJ0TBgoGlJ1mglG6l0k8l6JV2cUorU20P0I8aj5WBPJu3evpi0J5OWC5tN5uTH5xuYHA59xOB8eokLaZpK1yJzlyvX42RxFzPz-CsXqSxbG9WoTFytBGUlT56iTc5Tlt35SG623eRf_eY_6Q6YWA</recordid><startdate>20110310</startdate><enddate>20110310</enddate><creator>Williams, Byron K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20110310</creationdate><title>Resolving structural uncertainty in natural resources management using POMDP approaches</title><author>Williams, Byron K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-803cca6b28f4296b263f5167148dbabebef3c5570abf92c76cd0288a82590d003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>algorithms</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Markov decision process</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>natural resource management</topic><topic>Natural resources</topic><topic>Partial observability</topic><topic>resource management</topic><topic>Structural uncertainty</topic><topic>system optimization</topic><topic>uncertainty</topic><topic>Value iteration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Byron K.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Byron K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving structural uncertainty in natural resources management using POMDP approaches</atitle><jtitle>Ecological modelling</jtitle><date>2011-03-10</date><risdate>2011</risdate><volume>222</volume><issue>5</issue><spage>1092</spage><epage>1102</epage><pages>1092-1102</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><coden>ECMODT</coden><abstract>In recent years there has been a growing focus on the uncertainties of natural resources management, and the importance of accounting for uncertainty in assessing management effectiveness. This paper focuses on uncertainty in resource management in terms of discrete-state Markov decision processes (MDP) under structural uncertainty and partial observability. It describes the treatment of structural uncertainty with approaches developed for partially observable resource systems. In particular, I show how value iteration for partially observable MDPs (POMDP) can be extended to structurally uncertain MDPs. A key difference between these process classes is that structurally uncertain MDPs require the tracking of system state as well as a probability structure for the structure uncertainty, whereas with POMDPs require only a probability structure for the observation uncertainty. The added complexity of the optimization problem under structural uncertainty is compensated by reduced dimensionality in the search for optimal strategy. A solution algorithm for structurally uncertain processes is outlined for a simple example in conservation biology. By building on the conceptual framework developed for POMDPs, natural resource analysts and decision makers who confront structural uncertainties in natural resources can take advantage of the rapid growth in POMDP methods and approaches, and thereby produce better conservation strategies over a larger class of resource problems.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ecolmodel.2010.12.015</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3800
ispartof Ecological modelling, 2011-03, Vol.222 (5), p.1092-1102
issn 0304-3800
1872-7026
language eng
recordid cdi_proquest_miscellaneous_864393469
source Access via ScienceDirect (Elsevier)
subjects algorithms
Animal, plant and microbial ecology
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Markov decision process
Methods and techniques (sampling, tagging, trapping, modelling...)
natural resource management
Natural resources
Partial observability
resource management
Structural uncertainty
system optimization
uncertainty
Value iteration
title Resolving structural uncertainty in natural resources management using POMDP approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20structural%20uncertainty%20in%20natural%20resources%20management%20using%20POMDP%20approaches&rft.jtitle=Ecological%20modelling&rft.au=Williams,%20Byron%20K.&rft.date=2011-03-10&rft.volume=222&rft.issue=5&rft.spage=1092&rft.epage=1102&rft.pages=1092-1102&rft.issn=0304-3800&rft.eissn=1872-7026&rft.coden=ECMODT&rft_id=info:doi/10.1016/j.ecolmodel.2010.12.015&rft_dat=%3Cproquest_cross%3E864393469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864393469&rft_id=info:pmid/&rft_els_id=S0304380010006812&rfr_iscdi=true