Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation

Ionic polymer–metal composites (IPMCs) are soft actuation materials with promising applications in robotics and biomedical devices. However, traditional IPMC actuators can generate the bending motion only. In this paper, a lithography-based approach is presented for monolithic, batch-fabrication of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2010-02, Vol.157 (2), p.246-257
Hauptverfasser: Chen, Zheng, Tan, Xiaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue 2
container_start_page 246
container_title Sensors and actuators. A. Physical.
container_volume 157
creator Chen, Zheng
Tan, Xiaobo
description Ionic polymer–metal composites (IPMCs) are soft actuation materials with promising applications in robotics and biomedical devices. However, traditional IPMC actuators can generate the bending motion only. In this paper, a lithography-based approach is presented for monolithic, batch-fabrication of IPMC actuators that are capable of complex deformation. Such an actuator consists of multiple, individually controlled IPMC regions that are mechanically coupled through compliant, passive regions. Two novel techniques have been introduced to overcome challenges in fabrication of patterned IPMCs: (1) selectively thinning down Nafion using reactive ion etch, to make the passive areas thin and compliant, and (2) modulating the stiffness and swellability of Nafion with ion-exchange. Ion-exchanged Nafion shows almost 300% increase in stiffness, and over 94% reduction in swellability in water and acetone, which facilitates lithography and other critical fabrication steps. Prototypes of artificial pectoral fins have been fabricated with the proposed method, and sophisticated deformation modes, including bending, twisting, and cupping, have been demonstrated. For example, a peak-to-peak twisting angle of 16 ° is achieved under 3 V, 0.3 Hz actuation voltages, showing the promise of the fabricated device in robotic fish applications.
doi_str_mv 10.1016/j.sna.2009.11.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864393232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424709005111</els_id><sourcerecordid>864393232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-53da7945c27a5eba74cfe0d55b42038ed4f2290bd55a3fb632dfaca3a4b163293</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHbZsUrwX5JGrFDFn1TEBtbWxBkLV0kcbBfRHXfghpwEl7JGs3iaN_ONNI-Qc0YLRll1uS7CCAWntCkYKyiXB2TGFrXIBa2aQzKjDZe55LI-JichrCmlQtT1jLSPbnS9ja9WZwZabzVE68bMmSxJMifXbwf0359fA0boM-2GyQUbMQMdNxCdD5mGCdoed9Bu3ONH1qFxfvi9dUqODPQBz_50Tl5ub56X9_nq6e5heb3KtWjKmJeig7qRpeY1lNhCLbVB2pVlKzkVC-yk4byhbXJAmLYSvDOgQYBsWWoaMScX-7uTd28bDFENNmjsexjRbYJaVFI0gqeaE7bf1N6F4NGoydsB_FYxqnZxqrVKcapdnIoxleJMzNWewfTCu0WvgrY4auysRx1V5-w_9A9KQID8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864393232</pqid></control><display><type>article</type><title>Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Zheng ; Tan, Xiaobo</creator><creatorcontrib>Chen, Zheng ; Tan, Xiaobo</creatorcontrib><description>Ionic polymer–metal composites (IPMCs) are soft actuation materials with promising applications in robotics and biomedical devices. However, traditional IPMC actuators can generate the bending motion only. In this paper, a lithography-based approach is presented for monolithic, batch-fabrication of IPMC actuators that are capable of complex deformation. Such an actuator consists of multiple, individually controlled IPMC regions that are mechanically coupled through compliant, passive regions. Two novel techniques have been introduced to overcome challenges in fabrication of patterned IPMCs: (1) selectively thinning down Nafion using reactive ion etch, to make the passive areas thin and compliant, and (2) modulating the stiffness and swellability of Nafion with ion-exchange. Ion-exchanged Nafion shows almost 300% increase in stiffness, and over 94% reduction in swellability in water and acetone, which facilitates lithography and other critical fabrication steps. Prototypes of artificial pectoral fins have been fabricated with the proposed method, and sophisticated deformation modes, including bending, twisting, and cupping, have been demonstrated. For example, a peak-to-peak twisting angle of 16 ° is achieved under 3 V, 0.3 Hz actuation voltages, showing the promise of the fabricated device in robotic fish applications.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2009.11.024</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Actuation ; Actuators ; Automation ; Batch-fabrication ; Biomimetic actuation ; Complex deformation ; Deformation ; Devices ; Industrial robots ; Ionic polymer–metal composites ; Manufacturing engineering ; MEMS ; Twisting</subject><ispartof>Sensors and actuators. A. Physical., 2010-02, Vol.157 (2), p.246-257</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-53da7945c27a5eba74cfe0d55b42038ed4f2290bd55a3fb632dfaca3a4b163293</citedby><cites>FETCH-LOGICAL-c395t-53da7945c27a5eba74cfe0d55b42038ed4f2290bd55a3fb632dfaca3a4b163293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2009.11.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Tan, Xiaobo</creatorcontrib><title>Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation</title><title>Sensors and actuators. A. Physical.</title><description>Ionic polymer–metal composites (IPMCs) are soft actuation materials with promising applications in robotics and biomedical devices. However, traditional IPMC actuators can generate the bending motion only. In this paper, a lithography-based approach is presented for monolithic, batch-fabrication of IPMC actuators that are capable of complex deformation. Such an actuator consists of multiple, individually controlled IPMC regions that are mechanically coupled through compliant, passive regions. Two novel techniques have been introduced to overcome challenges in fabrication of patterned IPMCs: (1) selectively thinning down Nafion using reactive ion etch, to make the passive areas thin and compliant, and (2) modulating the stiffness and swellability of Nafion with ion-exchange. Ion-exchanged Nafion shows almost 300% increase in stiffness, and over 94% reduction in swellability in water and acetone, which facilitates lithography and other critical fabrication steps. Prototypes of artificial pectoral fins have been fabricated with the proposed method, and sophisticated deformation modes, including bending, twisting, and cupping, have been demonstrated. For example, a peak-to-peak twisting angle of 16 ° is achieved under 3 V, 0.3 Hz actuation voltages, showing the promise of the fabricated device in robotic fish applications.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Automation</subject><subject>Batch-fabrication</subject><subject>Biomimetic actuation</subject><subject>Complex deformation</subject><subject>Deformation</subject><subject>Devices</subject><subject>Industrial robots</subject><subject>Ionic polymer–metal composites</subject><subject>Manufacturing engineering</subject><subject>MEMS</subject><subject>Twisting</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHbZsUrwX5JGrFDFn1TEBtbWxBkLV0kcbBfRHXfghpwEl7JGs3iaN_ONNI-Qc0YLRll1uS7CCAWntCkYKyiXB2TGFrXIBa2aQzKjDZe55LI-JichrCmlQtT1jLSPbnS9ja9WZwZabzVE68bMmSxJMifXbwf0359fA0boM-2GyQUbMQMdNxCdD5mGCdoed9Bu3ONH1qFxfvi9dUqODPQBz_50Tl5ub56X9_nq6e5heb3KtWjKmJeig7qRpeY1lNhCLbVB2pVlKzkVC-yk4byhbXJAmLYSvDOgQYBsWWoaMScX-7uTd28bDFENNmjsexjRbYJaVFI0gqeaE7bf1N6F4NGoydsB_FYxqnZxqrVKcapdnIoxleJMzNWewfTCu0WvgrY4auysRx1V5-w_9A9KQID8</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Chen, Zheng</creator><creator>Tan, Xiaobo</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20100201</creationdate><title>Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation</title><author>Chen, Zheng ; Tan, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-53da7945c27a5eba74cfe0d55b42038ed4f2290bd55a3fb632dfaca3a4b163293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Automation</topic><topic>Batch-fabrication</topic><topic>Biomimetic actuation</topic><topic>Complex deformation</topic><topic>Deformation</topic><topic>Devices</topic><topic>Industrial robots</topic><topic>Ionic polymer–metal composites</topic><topic>Manufacturing engineering</topic><topic>MEMS</topic><topic>Twisting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Tan, Xiaobo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zheng</au><au>Tan, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>157</volume><issue>2</issue><spage>246</spage><epage>257</epage><pages>246-257</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>Ionic polymer–metal composites (IPMCs) are soft actuation materials with promising applications in robotics and biomedical devices. However, traditional IPMC actuators can generate the bending motion only. In this paper, a lithography-based approach is presented for monolithic, batch-fabrication of IPMC actuators that are capable of complex deformation. Such an actuator consists of multiple, individually controlled IPMC regions that are mechanically coupled through compliant, passive regions. Two novel techniques have been introduced to overcome challenges in fabrication of patterned IPMCs: (1) selectively thinning down Nafion using reactive ion etch, to make the passive areas thin and compliant, and (2) modulating the stiffness and swellability of Nafion with ion-exchange. Ion-exchanged Nafion shows almost 300% increase in stiffness, and over 94% reduction in swellability in water and acetone, which facilitates lithography and other critical fabrication steps. Prototypes of artificial pectoral fins have been fabricated with the proposed method, and sophisticated deformation modes, including bending, twisting, and cupping, have been demonstrated. For example, a peak-to-peak twisting angle of 16 ° is achieved under 3 V, 0.3 Hz actuation voltages, showing the promise of the fabricated device in robotic fish applications.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2009.11.024</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2010-02, Vol.157 (2), p.246-257
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_miscellaneous_864393232
source Access via ScienceDirect (Elsevier)
subjects Actuation
Actuators
Automation
Batch-fabrication
Biomimetic actuation
Complex deformation
Deformation
Devices
Industrial robots
Ionic polymer–metal composites
Manufacturing engineering
MEMS
Twisting
title Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolithic%20fabrication%20of%20ionic%20polymer%E2%80%93metal%20composite%20actuators%20capable%20of%20complex%20deformation&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Chen,%20Zheng&rft.date=2010-02-01&rft.volume=157&rft.issue=2&rft.spage=246&rft.epage=257&rft.pages=246-257&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2009.11.024&rft_dat=%3Cproquest_cross%3E864393232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864393232&rft_id=info:pmid/&rft_els_id=S0924424709005111&rfr_iscdi=true