CFD simulation of bubble column

Three-dimensional simulations of gas–liquid flow in the bubble column using the Euler–Euler approach is presented. The attempt is made to assess the performance and applicability of different turbulence models namely, k– ɛ, k– ɛ RNG, k– ω, Reynolds stress model (RSM) and large eddy simulation (LES)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design 2010-05, Vol.240 (5), p.963-969
Hauptverfasser: Ekambara, K., Dhotre, M.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 969
container_issue 5
container_start_page 963
container_title Nuclear engineering and design
container_volume 240
creator Ekambara, K.
Dhotre, M.T.
description Three-dimensional simulations of gas–liquid flow in the bubble column using the Euler–Euler approach is presented. The attempt is made to assess the performance and applicability of different turbulence models namely, k– ɛ, k– ɛ RNG, k– ω, Reynolds stress model (RSM) and large eddy simulation (LES) using a commercial code (ANSYS-CFX). For this purpose, the predictions are compared against the experimental data of Kulkarni et al. (2007). Performance of the turbulence models is assessed on basis of comparison of axial liquid velocity, fractional gas hold-up, turbulent kinetic energy and turbulent eddy dissipation rate. All the non-drag (turbulent dispersion, virtual mass and lift force) and drag force were incorporated in the model. The low-Reynolds number treatment of the k– ω yields a better qualitative prediction than the k– ɛ model. The RSM predictions are comparable with LES results and seemed to give better prediction near the sparger, where the flow is more anisotropic and gives a clue why RANS approaches fails to predict the flow in this region. However, the large eddy simulations showed good agreement with the experimental data, but requires higher computational time than RSM.
doi_str_mv 10.1016/j.nucengdes.2010.01.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864391452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549310000403</els_id><sourcerecordid>864391452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-969f0c20e75a757ff5891bf22e8daca1ae22a99d184cab71467e4546e4375cf43</originalsourceid><addsrcrecordid>eNqFkNFLwzAQxoMoOKd_w_oiPnUmadI0j2O6KQx8UfAtpOlFMtJ0Jq3gf2_Lxl49Pjg4fncf9yG0IHhJMCkf98swGAhfDaQlxeMUk1HlBZqRStBccPl5iWYYU5lzJotrdJPSHk8l6Qwt1punLLl28Lp3Xcg6m9VDXXvITOeHNtyiK6t9grtTn6OPzfP7-iXfvW1f16tdbgoh-lyW0mJDMQiuBRfW8kqS2lIKVaONJhoo1VI2pGJG14KwUgDjrARWCG4sK-bo4Xj3ELvvAVKvWpcMeK8DdENSVckKSRinIymOpIldShGsOkTX6virCFZTImqvzomoKRGFyahy3Lw_eehktLdRB-PSeZ1SLgiXE7c6cjA-_OMgqmQcBAONi2B61XTuX68_kkJ5VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864391452</pqid></control><display><type>article</type><title>CFD simulation of bubble column</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Ekambara, K. ; Dhotre, M.T.</creator><creatorcontrib>Ekambara, K. ; Dhotre, M.T.</creatorcontrib><description>Three-dimensional simulations of gas–liquid flow in the bubble column using the Euler–Euler approach is presented. The attempt is made to assess the performance and applicability of different turbulence models namely, k– ɛ, k– ɛ RNG, k– ω, Reynolds stress model (RSM) and large eddy simulation (LES) using a commercial code (ANSYS-CFX). For this purpose, the predictions are compared against the experimental data of Kulkarni et al. (2007). Performance of the turbulence models is assessed on basis of comparison of axial liquid velocity, fractional gas hold-up, turbulent kinetic energy and turbulent eddy dissipation rate. All the non-drag (turbulent dispersion, virtual mass and lift force) and drag force were incorporated in the model. The low-Reynolds number treatment of the k– ω yields a better qualitative prediction than the k– ɛ model. The RSM predictions are comparable with LES results and seemed to give better prediction near the sparger, where the flow is more anisotropic and gives a clue why RANS approaches fails to predict the flow in this region. However, the large eddy simulations showed good agreement with the experimental data, but requires higher computational time than RSM.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2010.01.016</identifier><identifier>CODEN: NEDEAU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Nuclear fuels</subject><ispartof>Nuclear engineering and design, 2010-05, Vol.240 (5), p.963-969</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-969f0c20e75a757ff5891bf22e8daca1ae22a99d184cab71467e4546e4375cf43</citedby><cites>FETCH-LOGICAL-c377t-969f0c20e75a757ff5891bf22e8daca1ae22a99d184cab71467e4546e4375cf43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nucengdes.2010.01.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22571596$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekambara, K.</creatorcontrib><creatorcontrib>Dhotre, M.T.</creatorcontrib><title>CFD simulation of bubble column</title><title>Nuclear engineering and design</title><description>Three-dimensional simulations of gas–liquid flow in the bubble column using the Euler–Euler approach is presented. The attempt is made to assess the performance and applicability of different turbulence models namely, k– ɛ, k– ɛ RNG, k– ω, Reynolds stress model (RSM) and large eddy simulation (LES) using a commercial code (ANSYS-CFX). For this purpose, the predictions are compared against the experimental data of Kulkarni et al. (2007). Performance of the turbulence models is assessed on basis of comparison of axial liquid velocity, fractional gas hold-up, turbulent kinetic energy and turbulent eddy dissipation rate. All the non-drag (turbulent dispersion, virtual mass and lift force) and drag force were incorporated in the model. The low-Reynolds number treatment of the k– ω yields a better qualitative prediction than the k– ɛ model. The RSM predictions are comparable with LES results and seemed to give better prediction near the sparger, where the flow is more anisotropic and gives a clue why RANS approaches fails to predict the flow in this region. However, the large eddy simulations showed good agreement with the experimental data, but requires higher computational time than RSM.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Nuclear fuels</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkNFLwzAQxoMoOKd_w_oiPnUmadI0j2O6KQx8UfAtpOlFMtJ0Jq3gf2_Lxl49Pjg4fncf9yG0IHhJMCkf98swGAhfDaQlxeMUk1HlBZqRStBccPl5iWYYU5lzJotrdJPSHk8l6Qwt1punLLl28Lp3Xcg6m9VDXXvITOeHNtyiK6t9grtTn6OPzfP7-iXfvW1f16tdbgoh-lyW0mJDMQiuBRfW8kqS2lIKVaONJhoo1VI2pGJG14KwUgDjrARWCG4sK-bo4Xj3ELvvAVKvWpcMeK8DdENSVckKSRinIymOpIldShGsOkTX6virCFZTImqvzomoKRGFyahy3Lw_eehktLdRB-PSeZ1SLgiXE7c6cjA-_OMgqmQcBAONi2B61XTuX68_kkJ5VA</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Ekambara, K.</creator><creator>Dhotre, M.T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>CFD simulation of bubble column</title><author>Ekambara, K. ; Dhotre, M.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-969f0c20e75a757ff5891bf22e8daca1ae22a99d184cab71467e4546e4375cf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Nuclear fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekambara, K.</creatorcontrib><creatorcontrib>Dhotre, M.T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekambara, K.</au><au>Dhotre, M.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD simulation of bubble column</atitle><jtitle>Nuclear engineering and design</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>240</volume><issue>5</issue><spage>963</spage><epage>969</epage><pages>963-969</pages><issn>0029-5493</issn><eissn>1872-759X</eissn><coden>NEDEAU</coden><abstract>Three-dimensional simulations of gas–liquid flow in the bubble column using the Euler–Euler approach is presented. The attempt is made to assess the performance and applicability of different turbulence models namely, k– ɛ, k– ɛ RNG, k– ω, Reynolds stress model (RSM) and large eddy simulation (LES) using a commercial code (ANSYS-CFX). For this purpose, the predictions are compared against the experimental data of Kulkarni et al. (2007). Performance of the turbulence models is assessed on basis of comparison of axial liquid velocity, fractional gas hold-up, turbulent kinetic energy and turbulent eddy dissipation rate. All the non-drag (turbulent dispersion, virtual mass and lift force) and drag force were incorporated in the model. The low-Reynolds number treatment of the k– ω yields a better qualitative prediction than the k– ɛ model. The RSM predictions are comparable with LES results and seemed to give better prediction near the sparger, where the flow is more anisotropic and gives a clue why RANS approaches fails to predict the flow in this region. However, the large eddy simulations showed good agreement with the experimental data, but requires higher computational time than RSM.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2010.01.016</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5493
ispartof Nuclear engineering and design, 2010-05, Vol.240 (5), p.963-969
issn 0029-5493
1872-759X
language eng
recordid cdi_proquest_miscellaneous_864391452
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Applied sciences
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
Installations for energy generation and conversion: thermal and electrical energy
Nuclear fuels
title CFD simulation of bubble column
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20simulation%20of%20bubble%20column&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Ekambara,%20K.&rft.date=2010-05-01&rft.volume=240&rft.issue=5&rft.spage=963&rft.epage=969&rft.pages=963-969&rft.issn=0029-5493&rft.eissn=1872-759X&rft.coden=NEDEAU&rft_id=info:doi/10.1016/j.nucengdes.2010.01.016&rft_dat=%3Cproquest_cross%3E864391452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864391452&rft_id=info:pmid/&rft_els_id=S0029549310000403&rfr_iscdi=true