Boundary element analysis of cracked homogeneous or bi-material structures under thermo-mechanical cycling

We present a sub-domain boundary element procedure to evaluate the failure capacity of cracked homogeneous and bi-material media under cyclic thermo-mechanical loads. The boundary integral equations of uncoupled, time-dependent thermo-elasticity are employed to account for the time-varying nature of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2010-12, Vol.199 (49-52), p.3345-3355
Hauptverfasser: Keppas, L.K., Anifantis, N.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3355
container_issue 49-52
container_start_page 3345
container_title Computer methods in applied mechanics and engineering
container_volume 199
creator Keppas, L.K.
Anifantis, N.K.
description We present a sub-domain boundary element procedure to evaluate the failure capacity of cracked homogeneous and bi-material media under cyclic thermo-mechanical loads. The boundary integral equations of uncoupled, time-dependent thermo-elasticity are employed to account for the time-varying nature of the thermal load. If crack closure due to thermal distortion takes place, then the displacement and traction field may affect the heat flux between the crack faces, and the thermal and mechanical parts of the problem will need to be solved repeatedly until thermo-mechanical convergence is achieved. We present results from cases of pure mode-I fracture in homogeneous materials and for interfacial fracture in bi-materials. Our study discusses the influence of crack closure on quasi-static, sub-critical crack extension. Especially in case of interfacial cracks the type of loading, the thermal resistance between the crack faces, and the coefficient of friction are also taken into account. The results suggest that the above parameters may have a severe impact on the predicted failure capacity of cracked structures and should be considered in the evaluation of fatigue life.
doi_str_mv 10.1016/j.cma.2010.07.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864384779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782510002185</els_id><sourcerecordid>864384779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4566461f7c4c42fa4949575f7b3406ddc4f19158e2459747061f15be9079b6fd3</originalsourceid><addsrcrecordid>eNp9kM1O4zAUha0RI1GYeQB23iBWKXbin1isAPEnIbGZWVvuzXXrThIXO0Hq24-hiCXeWLa-e67OR8gZZ0vOuLrcLmFwy5qVN9NLxtQPsuCtNlXNm_aILBgTstJtLY_JSc5bVk7L6wXZ3sR57FzaU-xxwHGibnT9PodMo6eQHPzDjm7iENc4YpzLd6KrUA1uwhRcT_OUZpjmhJmWIEx02mAaYjUgbNwYoCCwhz6M61_kp3d9xt-f9yn5e3_35_axen55eLq9fq6gkWaqhFRKKO41CBC1d8III7X0etUIproOhOeGyxZrIY0WmhWWyxUaps1K-a45JReH3F2KrzPmyQ4hA_a9-yhgWyWaVmhtCskPJKSYc0JvdykMRYblzL5rtVtbtNp3rZZpW7SWmfPPdJdLOZ_cCCF_DdaNalRtROGuDhyWqm8Bk80QcATsQkKYbBfDN1v-A4d5jf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864384779</pqid></control><display><type>article</type><title>Boundary element analysis of cracked homogeneous or bi-material structures under thermo-mechanical cycling</title><source>Access via ScienceDirect (Elsevier)</source><creator>Keppas, L.K. ; Anifantis, N.K.</creator><creatorcontrib>Keppas, L.K. ; Anifantis, N.K.</creatorcontrib><description>We present a sub-domain boundary element procedure to evaluate the failure capacity of cracked homogeneous and bi-material media under cyclic thermo-mechanical loads. The boundary integral equations of uncoupled, time-dependent thermo-elasticity are employed to account for the time-varying nature of the thermal load. If crack closure due to thermal distortion takes place, then the displacement and traction field may affect the heat flux between the crack faces, and the thermal and mechanical parts of the problem will need to be solved repeatedly until thermo-mechanical convergence is achieved. We present results from cases of pure mode-I fracture in homogeneous materials and for interfacial fracture in bi-materials. Our study discusses the influence of crack closure on quasi-static, sub-critical crack extension. Especially in case of interfacial cracks the type of loading, the thermal resistance between the crack faces, and the coefficient of friction are also taken into account. The results suggest that the above parameters may have a severe impact on the predicted failure capacity of cracked structures and should be considered in the evaluation of fatigue life.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2010.07.006</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Analytical and numerical techniques ; Boundaries ; Boundary element method ; Boundary elements ; Crack closure ; Exact sciences and technology ; Fatigue failure ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Heat transfer ; Interfacial cracks ; Mathematical analysis ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Sub-critical crack growth ; Thermal resistance ; Thermo-mechanical cycling ; Time-dependent thermo-elasticity</subject><ispartof>Computer methods in applied mechanics and engineering, 2010-12, Vol.199 (49-52), p.3345-3355</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-4566461f7c4c42fa4949575f7b3406ddc4f19158e2459747061f15be9079b6fd3</citedby><cites>FETCH-LOGICAL-c359t-4566461f7c4c42fa4949575f7b3406ddc4f19158e2459747061f15be9079b6fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2010.07.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23636294$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keppas, L.K.</creatorcontrib><creatorcontrib>Anifantis, N.K.</creatorcontrib><title>Boundary element analysis of cracked homogeneous or bi-material structures under thermo-mechanical cycling</title><title>Computer methods in applied mechanics and engineering</title><description>We present a sub-domain boundary element procedure to evaluate the failure capacity of cracked homogeneous and bi-material media under cyclic thermo-mechanical loads. The boundary integral equations of uncoupled, time-dependent thermo-elasticity are employed to account for the time-varying nature of the thermal load. If crack closure due to thermal distortion takes place, then the displacement and traction field may affect the heat flux between the crack faces, and the thermal and mechanical parts of the problem will need to be solved repeatedly until thermo-mechanical convergence is achieved. We present results from cases of pure mode-I fracture in homogeneous materials and for interfacial fracture in bi-materials. Our study discusses the influence of crack closure on quasi-static, sub-critical crack extension. Especially in case of interfacial cracks the type of loading, the thermal resistance between the crack faces, and the coefficient of friction are also taken into account. The results suggest that the above parameters may have a severe impact on the predicted failure capacity of cracked structures and should be considered in the evaluation of fatigue life.</description><subject>Analytical and numerical techniques</subject><subject>Boundaries</subject><subject>Boundary element method</subject><subject>Boundary elements</subject><subject>Crack closure</subject><subject>Exact sciences and technology</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer</subject><subject>Interfacial cracks</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Sub-critical crack growth</subject><subject>Thermal resistance</subject><subject>Thermo-mechanical cycling</subject><subject>Time-dependent thermo-elasticity</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O4zAUha0RI1GYeQB23iBWKXbin1isAPEnIbGZWVvuzXXrThIXO0Hq24-hiCXeWLa-e67OR8gZZ0vOuLrcLmFwy5qVN9NLxtQPsuCtNlXNm_aILBgTstJtLY_JSc5bVk7L6wXZ3sR57FzaU-xxwHGibnT9PodMo6eQHPzDjm7iENc4YpzLd6KrUA1uwhRcT_OUZpjmhJmWIEx02mAaYjUgbNwYoCCwhz6M61_kp3d9xt-f9yn5e3_35_axen55eLq9fq6gkWaqhFRKKO41CBC1d8III7X0etUIproOhOeGyxZrIY0WmhWWyxUaps1K-a45JReH3F2KrzPmyQ4hA_a9-yhgWyWaVmhtCskPJKSYc0JvdykMRYblzL5rtVtbtNp3rZZpW7SWmfPPdJdLOZ_cCCF_DdaNalRtROGuDhyWqm8Bk80QcATsQkKYbBfDN1v-A4d5jf4</recordid><startdate>20101215</startdate><enddate>20101215</enddate><creator>Keppas, L.K.</creator><creator>Anifantis, N.K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101215</creationdate><title>Boundary element analysis of cracked homogeneous or bi-material structures under thermo-mechanical cycling</title><author>Keppas, L.K. ; Anifantis, N.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4566461f7c4c42fa4949575f7b3406ddc4f19158e2459747061f15be9079b6fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical and numerical techniques</topic><topic>Boundaries</topic><topic>Boundary element method</topic><topic>Boundary elements</topic><topic>Crack closure</topic><topic>Exact sciences and technology</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer</topic><topic>Interfacial cracks</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Sub-critical crack growth</topic><topic>Thermal resistance</topic><topic>Thermo-mechanical cycling</topic><topic>Time-dependent thermo-elasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keppas, L.K.</creatorcontrib><creatorcontrib>Anifantis, N.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keppas, L.K.</au><au>Anifantis, N.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary element analysis of cracked homogeneous or bi-material structures under thermo-mechanical cycling</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2010-12-15</date><risdate>2010</risdate><volume>199</volume><issue>49-52</issue><spage>3345</spage><epage>3355</epage><pages>3345-3355</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>We present a sub-domain boundary element procedure to evaluate the failure capacity of cracked homogeneous and bi-material media under cyclic thermo-mechanical loads. The boundary integral equations of uncoupled, time-dependent thermo-elasticity are employed to account for the time-varying nature of the thermal load. If crack closure due to thermal distortion takes place, then the displacement and traction field may affect the heat flux between the crack faces, and the thermal and mechanical parts of the problem will need to be solved repeatedly until thermo-mechanical convergence is achieved. We present results from cases of pure mode-I fracture in homogeneous materials and for interfacial fracture in bi-materials. Our study discusses the influence of crack closure on quasi-static, sub-critical crack extension. Especially in case of interfacial cracks the type of loading, the thermal resistance between the crack faces, and the coefficient of friction are also taken into account. The results suggest that the above parameters may have a severe impact on the predicted failure capacity of cracked structures and should be considered in the evaluation of fatigue life.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2010.07.006</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2010-12, Vol.199 (49-52), p.3345-3355
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_864384779
source Access via ScienceDirect (Elsevier)
subjects Analytical and numerical techniques
Boundaries
Boundary element method
Boundary elements
Crack closure
Exact sciences and technology
Fatigue failure
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Heat transfer
Interfacial cracks
Mathematical analysis
Physics
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Sub-critical crack growth
Thermal resistance
Thermo-mechanical cycling
Time-dependent thermo-elasticity
title Boundary element analysis of cracked homogeneous or bi-material structures under thermo-mechanical cycling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T21%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20element%20analysis%20of%20cracked%20homogeneous%20or%20bi-material%20structures%20under%20thermo-mechanical%20cycling&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Keppas,%20L.K.&rft.date=2010-12-15&rft.volume=199&rft.issue=49-52&rft.spage=3345&rft.epage=3355&rft.pages=3345-3355&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2010.07.006&rft_dat=%3Cproquest_cross%3E864384779%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864384779&rft_id=info:pmid/&rft_els_id=S0045782510002185&rfr_iscdi=true