Modeling Exposure Close to Air Pollution Sources in Naturally Ventilated Residences: Association of Turbulent Diffusion Coefficient with Air Change Rate
For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2011-05, Vol.45 (9), p.4016-4022 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4022 |
---|---|
container_issue | 9 |
container_start_page | 4016 |
container_title | Environmental science & technology |
container_volume | 45 |
creator | Cheng, Kai-Chung Acevedo-Bolton, Viviana Jiang, Ruo-Ting Klepeis, Neil E Ott, Wayne R Fringer, Oliver B Hildemann, Lynn M |
description | For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30−37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from 5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m2 s−1. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25−5.0 m. The air change rate, as measured using a SF6 tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source. |
doi_str_mv | 10.1021/es103080p |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864191474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2364022901</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-5053686f82e1592a8b89621b8c5dade1febef2c5cf82f60690c9a6350894c0563</originalsourceid><addsrcrecordid>eNpl0d1qFDEUB_Agil2rF76ABEHEi9FkZpLN9G4Z6wfUD2oV74ZM5qRNySZrzgTtm_i4Ztu1C3oVOPzyP4dzCHnM2UvOav4KkLOGKba5QxZc1KwSSvC7ZMEYb6qukd8PyAPES8ZYXdh9clDzVkixrBfk94c4gXfhnB7_2kTMCWjvIwKdI125RD9H7_PsYqBfYk4GkLpAP-o5J-39Ff0GYXZezzDRU0A3QSjkiK4Qo3H6-l-09CynMftC6WtnbcZtuY9grTNuW_3p5ovrbv2FDudAT0vgQ3LPao_waPcekq9vjs_6d9XJp7fv-9VJpZslnyvBRCOVtKoGLrpaq1F1suajMmLSE3ALI9jaCFOElUx2zHRaNoKprjVMyOaQPL_J3aT4IwPOw9qhAe91gJhxULLlHW-XbZFP_5GXZSWhDFdQaaqk6gp6cYNMiogJ7LBJbq3T1cDZsD3WcHusYp_sAvO4hulW_r1OAc92QKPR3iYdjMO9azlbct7tnTa4H-r_hn8A_wmpSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869628689</pqid></control><display><type>article</type><title>Modeling Exposure Close to Air Pollution Sources in Naturally Ventilated Residences: Association of Turbulent Diffusion Coefficient with Air Change Rate</title><source>MEDLINE</source><source>ACS Publications</source><creator>Cheng, Kai-Chung ; Acevedo-Bolton, Viviana ; Jiang, Ruo-Ting ; Klepeis, Neil E ; Ott, Wayne R ; Fringer, Oliver B ; Hildemann, Lynn M</creator><creatorcontrib>Cheng, Kai-Chung ; Acevedo-Bolton, Viviana ; Jiang, Ruo-Ting ; Klepeis, Neil E ; Ott, Wayne R ; Fringer, Oliver B ; Hildemann, Lynn M</creatorcontrib><description>For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30−37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m2 s−1. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25−5.0 m. The air change rate, as measured using a SF6 tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es103080p</identifier><identifier>PMID: 21456572</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Air ; Air Movements ; Air pollution ; Air Pollution, Indoor - analysis ; Applied sciences ; Biological and medical sciences ; Carbon Monoxide - analysis ; Correlation analysis ; Diffusion ; Emissions ; Environmental Exposure - analysis ; Environmental Modeling ; Environmental Monitoring - methods ; Environmental pollutants toxicology ; Exact sciences and technology ; Housing ; Indoor air quality ; Medical sciences ; Models, Chemical ; Pollution ; Toxicology ; Turbulence ; Ventilation</subject><ispartof>Environmental science & technology, 2011-05, Vol.45 (9), p.4016-4022</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society May 1, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-5053686f82e1592a8b89621b8c5dade1febef2c5cf82f60690c9a6350894c0563</citedby><cites>FETCH-LOGICAL-a371t-5053686f82e1592a8b89621b8c5dade1febef2c5cf82f60690c9a6350894c0563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es103080p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es103080p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24107119$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21456572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Kai-Chung</creatorcontrib><creatorcontrib>Acevedo-Bolton, Viviana</creatorcontrib><creatorcontrib>Jiang, Ruo-Ting</creatorcontrib><creatorcontrib>Klepeis, Neil E</creatorcontrib><creatorcontrib>Ott, Wayne R</creatorcontrib><creatorcontrib>Fringer, Oliver B</creatorcontrib><creatorcontrib>Hildemann, Lynn M</creatorcontrib><title>Modeling Exposure Close to Air Pollution Sources in Naturally Ventilated Residences: Association of Turbulent Diffusion Coefficient with Air Change Rate</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30−37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m2 s−1. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25−5.0 m. The air change rate, as measured using a SF6 tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.</description><subject>Air</subject><subject>Air Movements</subject><subject>Air pollution</subject><subject>Air Pollution, Indoor - analysis</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Carbon Monoxide - analysis</subject><subject>Correlation analysis</subject><subject>Diffusion</subject><subject>Emissions</subject><subject>Environmental Exposure - analysis</subject><subject>Environmental Modeling</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental pollutants toxicology</subject><subject>Exact sciences and technology</subject><subject>Housing</subject><subject>Indoor air quality</subject><subject>Medical sciences</subject><subject>Models, Chemical</subject><subject>Pollution</subject><subject>Toxicology</subject><subject>Turbulence</subject><subject>Ventilation</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0d1qFDEUB_Agil2rF76ABEHEi9FkZpLN9G4Z6wfUD2oV74ZM5qRNySZrzgTtm_i4Ztu1C3oVOPzyP4dzCHnM2UvOav4KkLOGKba5QxZc1KwSSvC7ZMEYb6qukd8PyAPES8ZYXdh9clDzVkixrBfk94c4gXfhnB7_2kTMCWjvIwKdI125RD9H7_PsYqBfYk4GkLpAP-o5J-39Ff0GYXZezzDRU0A3QSjkiK4Qo3H6-l-09CynMftC6WtnbcZtuY9grTNuW_3p5ovrbv2FDudAT0vgQ3LPao_waPcekq9vjs_6d9XJp7fv-9VJpZslnyvBRCOVtKoGLrpaq1F1suajMmLSE3ALI9jaCFOElUx2zHRaNoKprjVMyOaQPL_J3aT4IwPOw9qhAe91gJhxULLlHW-XbZFP_5GXZSWhDFdQaaqk6gp6cYNMiogJ7LBJbq3T1cDZsD3WcHusYp_sAvO4hulW_r1OAc92QKPR3iYdjMO9azlbct7tnTa4H-r_hn8A_wmpSw</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Cheng, Kai-Chung</creator><creator>Acevedo-Bolton, Viviana</creator><creator>Jiang, Ruo-Ting</creator><creator>Klepeis, Neil E</creator><creator>Ott, Wayne R</creator><creator>Fringer, Oliver B</creator><creator>Hildemann, Lynn M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20110501</creationdate><title>Modeling Exposure Close to Air Pollution Sources in Naturally Ventilated Residences: Association of Turbulent Diffusion Coefficient with Air Change Rate</title><author>Cheng, Kai-Chung ; Acevedo-Bolton, Viviana ; Jiang, Ruo-Ting ; Klepeis, Neil E ; Ott, Wayne R ; Fringer, Oliver B ; Hildemann, Lynn M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-5053686f82e1592a8b89621b8c5dade1febef2c5cf82f60690c9a6350894c0563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air</topic><topic>Air Movements</topic><topic>Air pollution</topic><topic>Air Pollution, Indoor - analysis</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Carbon Monoxide - analysis</topic><topic>Correlation analysis</topic><topic>Diffusion</topic><topic>Emissions</topic><topic>Environmental Exposure - analysis</topic><topic>Environmental Modeling</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental pollutants toxicology</topic><topic>Exact sciences and technology</topic><topic>Housing</topic><topic>Indoor air quality</topic><topic>Medical sciences</topic><topic>Models, Chemical</topic><topic>Pollution</topic><topic>Toxicology</topic><topic>Turbulence</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Kai-Chung</creatorcontrib><creatorcontrib>Acevedo-Bolton, Viviana</creatorcontrib><creatorcontrib>Jiang, Ruo-Ting</creatorcontrib><creatorcontrib>Klepeis, Neil E</creatorcontrib><creatorcontrib>Ott, Wayne R</creatorcontrib><creatorcontrib>Fringer, Oliver B</creatorcontrib><creatorcontrib>Hildemann, Lynn M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Kai-Chung</au><au>Acevedo-Bolton, Viviana</au><au>Jiang, Ruo-Ting</au><au>Klepeis, Neil E</au><au>Ott, Wayne R</au><au>Fringer, Oliver B</au><au>Hildemann, Lynn M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Exposure Close to Air Pollution Sources in Naturally Ventilated Residences: Association of Turbulent Diffusion Coefficient with Air Change Rate</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>45</volume><issue>9</issue><spage>4016</spage><epage>4022</epage><pages>4016-4022</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30−37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m2 s−1. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25−5.0 m. The air change rate, as measured using a SF6 tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21456572</pmid><doi>10.1021/es103080p</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2011-05, Vol.45 (9), p.4016-4022 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_864191474 |
source | MEDLINE; ACS Publications |
subjects | Air Air Movements Air pollution Air Pollution, Indoor - analysis Applied sciences Biological and medical sciences Carbon Monoxide - analysis Correlation analysis Diffusion Emissions Environmental Exposure - analysis Environmental Modeling Environmental Monitoring - methods Environmental pollutants toxicology Exact sciences and technology Housing Indoor air quality Medical sciences Models, Chemical Pollution Toxicology Turbulence Ventilation |
title | Modeling Exposure Close to Air Pollution Sources in Naturally Ventilated Residences: Association of Turbulent Diffusion Coefficient with Air Change Rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Exposure%20Close%20to%20Air%20Pollution%20Sources%20in%20Naturally%20Ventilated%20Residences:%20Association%20of%20Turbulent%20Diffusion%20Coefficient%20with%20Air%20Change%20Rate&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Cheng,%20Kai-Chung&rft.date=2011-05-01&rft.volume=45&rft.issue=9&rft.spage=4016&rft.epage=4022&rft.pages=4016-4022&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es103080p&rft_dat=%3Cproquest_cross%3E2364022901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869628689&rft_id=info:pmid/21456572&rfr_iscdi=true |