Modeling Exposure Close to Air Pollution Sources in Naturally Ventilated Residences: Association of Turbulent Diffusion Coefficient with Air Change Rate

For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2011-05, Vol.45 (9), p.4016-4022
Hauptverfasser: Cheng, Kai-Chung, Acevedo-Bolton, Viviana, Jiang, Ruo-Ting, Klepeis, Neil E, Ott, Wayne R, Fringer, Oliver B, Hildemann, Lynn M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4022
container_issue 9
container_start_page 4016
container_title Environmental science & technology
container_volume 45
creator Cheng, Kai-Chung
Acevedo-Bolton, Viviana
Jiang, Ruo-Ting
Klepeis, Neil E
Ott, Wayne R
Fringer, Oliver B
Hildemann, Lynn M
description For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30−37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from 5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m2 s−1. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25−5.0 m. The air change rate, as measured using a SF6 tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.
doi_str_mv 10.1021/es103080p
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864191474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2364022901</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-5053686f82e1592a8b89621b8c5dade1febef2c5cf82f60690c9a6350894c0563</originalsourceid><addsrcrecordid>eNpl0d1qFDEUB_Agil2rF76ABEHEi9FkZpLN9G4Z6wfUD2oV74ZM5qRNySZrzgTtm_i4Ztu1C3oVOPzyP4dzCHnM2UvOav4KkLOGKba5QxZc1KwSSvC7ZMEYb6qukd8PyAPES8ZYXdh9clDzVkixrBfk94c4gXfhnB7_2kTMCWjvIwKdI125RD9H7_PsYqBfYk4GkLpAP-o5J-39Ff0GYXZezzDRU0A3QSjkiK4Qo3H6-l-09CynMftC6WtnbcZtuY9grTNuW_3p5ovrbv2FDudAT0vgQ3LPao_waPcekq9vjs_6d9XJp7fv-9VJpZslnyvBRCOVtKoGLrpaq1F1suajMmLSE3ALI9jaCFOElUx2zHRaNoKprjVMyOaQPL_J3aT4IwPOw9qhAe91gJhxULLlHW-XbZFP_5GXZSWhDFdQaaqk6gp6cYNMiogJ7LBJbq3T1cDZsD3WcHusYp_sAvO4hulW_r1OAc92QKPR3iYdjMO9azlbct7tnTa4H-r_hn8A_wmpSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869628689</pqid></control><display><type>article</type><title>Modeling Exposure Close to Air Pollution Sources in Naturally Ventilated Residences: Association of Turbulent Diffusion Coefficient with Air Change Rate</title><source>MEDLINE</source><source>ACS Publications</source><creator>Cheng, Kai-Chung ; Acevedo-Bolton, Viviana ; Jiang, Ruo-Ting ; Klepeis, Neil E ; Ott, Wayne R ; Fringer, Oliver B ; Hildemann, Lynn M</creator><creatorcontrib>Cheng, Kai-Chung ; Acevedo-Bolton, Viviana ; Jiang, Ruo-Ting ; Klepeis, Neil E ; Ott, Wayne R ; Fringer, Oliver B ; Hildemann, Lynn M</creatorcontrib><description>For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30−37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from &lt;0.2 to &gt;5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m2 s−1. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25−5.0 m. The air change rate, as measured using a SF6 tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es103080p</identifier><identifier>PMID: 21456572</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Air ; Air Movements ; Air pollution ; Air Pollution, Indoor - analysis ; Applied sciences ; Biological and medical sciences ; Carbon Monoxide - analysis ; Correlation analysis ; Diffusion ; Emissions ; Environmental Exposure - analysis ; Environmental Modeling ; Environmental Monitoring - methods ; Environmental pollutants toxicology ; Exact sciences and technology ; Housing ; Indoor air quality ; Medical sciences ; Models, Chemical ; Pollution ; Toxicology ; Turbulence ; Ventilation</subject><ispartof>Environmental science &amp; technology, 2011-05, Vol.45 (9), p.4016-4022</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society May 1, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-5053686f82e1592a8b89621b8c5dade1febef2c5cf82f60690c9a6350894c0563</citedby><cites>FETCH-LOGICAL-a371t-5053686f82e1592a8b89621b8c5dade1febef2c5cf82f60690c9a6350894c0563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es103080p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es103080p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24107119$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21456572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Kai-Chung</creatorcontrib><creatorcontrib>Acevedo-Bolton, Viviana</creatorcontrib><creatorcontrib>Jiang, Ruo-Ting</creatorcontrib><creatorcontrib>Klepeis, Neil E</creatorcontrib><creatorcontrib>Ott, Wayne R</creatorcontrib><creatorcontrib>Fringer, Oliver B</creatorcontrib><creatorcontrib>Hildemann, Lynn M</creatorcontrib><title>Modeling Exposure Close to Air Pollution Sources in Naturally Ventilated Residences: Association of Turbulent Diffusion Coefficient with Air Change Rate</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30−37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from &lt;0.2 to &gt;5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m2 s−1. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25−5.0 m. The air change rate, as measured using a SF6 tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.</description><subject>Air</subject><subject>Air Movements</subject><subject>Air pollution</subject><subject>Air Pollution, Indoor - analysis</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Carbon Monoxide - analysis</subject><subject>Correlation analysis</subject><subject>Diffusion</subject><subject>Emissions</subject><subject>Environmental Exposure - analysis</subject><subject>Environmental Modeling</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental pollutants toxicology</subject><subject>Exact sciences and technology</subject><subject>Housing</subject><subject>Indoor air quality</subject><subject>Medical sciences</subject><subject>Models, Chemical</subject><subject>Pollution</subject><subject>Toxicology</subject><subject>Turbulence</subject><subject>Ventilation</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0d1qFDEUB_Agil2rF76ABEHEi9FkZpLN9G4Z6wfUD2oV74ZM5qRNySZrzgTtm_i4Ztu1C3oVOPzyP4dzCHnM2UvOav4KkLOGKba5QxZc1KwSSvC7ZMEYb6qukd8PyAPES8ZYXdh9clDzVkixrBfk94c4gXfhnB7_2kTMCWjvIwKdI125RD9H7_PsYqBfYk4GkLpAP-o5J-39Ff0GYXZezzDRU0A3QSjkiK4Qo3H6-l-09CynMftC6WtnbcZtuY9grTNuW_3p5ovrbv2FDudAT0vgQ3LPao_waPcekq9vjs_6d9XJp7fv-9VJpZslnyvBRCOVtKoGLrpaq1F1suajMmLSE3ALI9jaCFOElUx2zHRaNoKprjVMyOaQPL_J3aT4IwPOw9qhAe91gJhxULLlHW-XbZFP_5GXZSWhDFdQaaqk6gp6cYNMiogJ7LBJbq3T1cDZsD3WcHusYp_sAvO4hulW_r1OAc92QKPR3iYdjMO9azlbct7tnTa4H-r_hn8A_wmpSw</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Cheng, Kai-Chung</creator><creator>Acevedo-Bolton, Viviana</creator><creator>Jiang, Ruo-Ting</creator><creator>Klepeis, Neil E</creator><creator>Ott, Wayne R</creator><creator>Fringer, Oliver B</creator><creator>Hildemann, Lynn M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20110501</creationdate><title>Modeling Exposure Close to Air Pollution Sources in Naturally Ventilated Residences: Association of Turbulent Diffusion Coefficient with Air Change Rate</title><author>Cheng, Kai-Chung ; Acevedo-Bolton, Viviana ; Jiang, Ruo-Ting ; Klepeis, Neil E ; Ott, Wayne R ; Fringer, Oliver B ; Hildemann, Lynn M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-5053686f82e1592a8b89621b8c5dade1febef2c5cf82f60690c9a6350894c0563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air</topic><topic>Air Movements</topic><topic>Air pollution</topic><topic>Air Pollution, Indoor - analysis</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Carbon Monoxide - analysis</topic><topic>Correlation analysis</topic><topic>Diffusion</topic><topic>Emissions</topic><topic>Environmental Exposure - analysis</topic><topic>Environmental Modeling</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental pollutants toxicology</topic><topic>Exact sciences and technology</topic><topic>Housing</topic><topic>Indoor air quality</topic><topic>Medical sciences</topic><topic>Models, Chemical</topic><topic>Pollution</topic><topic>Toxicology</topic><topic>Turbulence</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Kai-Chung</creatorcontrib><creatorcontrib>Acevedo-Bolton, Viviana</creatorcontrib><creatorcontrib>Jiang, Ruo-Ting</creatorcontrib><creatorcontrib>Klepeis, Neil E</creatorcontrib><creatorcontrib>Ott, Wayne R</creatorcontrib><creatorcontrib>Fringer, Oliver B</creatorcontrib><creatorcontrib>Hildemann, Lynn M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Kai-Chung</au><au>Acevedo-Bolton, Viviana</au><au>Jiang, Ruo-Ting</au><au>Klepeis, Neil E</au><au>Ott, Wayne R</au><au>Fringer, Oliver B</au><au>Hildemann, Lynn M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Exposure Close to Air Pollution Sources in Naturally Ventilated Residences: Association of Turbulent Diffusion Coefficient with Air Change Rate</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>45</volume><issue>9</issue><spage>4016</spage><epage>4022</epage><pages>4016-4022</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30−37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from &lt;0.2 to &gt;5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m2 s−1. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25−5.0 m. The air change rate, as measured using a SF6 tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21456572</pmid><doi>10.1021/es103080p</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2011-05, Vol.45 (9), p.4016-4022
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_864191474
source MEDLINE; ACS Publications
subjects Air
Air Movements
Air pollution
Air Pollution, Indoor - analysis
Applied sciences
Biological and medical sciences
Carbon Monoxide - analysis
Correlation analysis
Diffusion
Emissions
Environmental Exposure - analysis
Environmental Modeling
Environmental Monitoring - methods
Environmental pollutants toxicology
Exact sciences and technology
Housing
Indoor air quality
Medical sciences
Models, Chemical
Pollution
Toxicology
Turbulence
Ventilation
title Modeling Exposure Close to Air Pollution Sources in Naturally Ventilated Residences: Association of Turbulent Diffusion Coefficient with Air Change Rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Exposure%20Close%20to%20Air%20Pollution%20Sources%20in%20Naturally%20Ventilated%20Residences:%20Association%20of%20Turbulent%20Diffusion%20Coefficient%20with%20Air%20Change%20Rate&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Cheng,%20Kai-Chung&rft.date=2011-05-01&rft.volume=45&rft.issue=9&rft.spage=4016&rft.epage=4022&rft.pages=4016-4022&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es103080p&rft_dat=%3Cproquest_cross%3E2364022901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869628689&rft_id=info:pmid/21456572&rfr_iscdi=true