Nitric oxide donors improve prednisone effects on muscular dystrophy in the mdx mouse diaphragm

In Duchenne muscular dystrophy (DMD), palliative glucocorticoid therapy can produce myopathy or calcification. Since increased nitric oxide synthase activity in dystrophic mice promotes regeneration, the outcome of two nitric oxide (NO) donor drugs, MyoNovin (M) and isosorbide dinitrate (I), on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2011-05, Vol.300 (5), p.C1065-C1077
Hauptverfasser: Mizunoya, Wataru, Upadhaya, Ritika, Burczynski, Frank J, Wang, Guqi, Anderson, Judy E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Duchenne muscular dystrophy (DMD), palliative glucocorticoid therapy can produce myopathy or calcification. Since increased nitric oxide synthase activity in dystrophic mice promotes regeneration, the outcome of two nitric oxide (NO) donor drugs, MyoNovin (M) and isosorbide dinitrate (I), on the effectiveness of the anti-inflammatory drug prednisone (P) in alleviating progression of dystrophy was tested. Dystrophic mdx mice were treated (18 days) as controls or with an NO donor ± P. Fiber permeability and DNA synthesis were labeled by Evans blue dye (EBD) and bromodeoxyuridine uptake, respectively. P decreased body weight gain, M increased quadriceps mass, and I increased heart mass. P increased fiber permeability (%EBD+ fibers) and calcification in diaphragm. Treatment with NO donors + P (M+P, I+P) reduced %EBD+ fibers and calcification vs. P alone. %EBD+ fibers in M+P diaphragm did not differ from control. NO donor treatment reduced proliferation and the population of c-met+ cells and accelerated fiber regeneration. Concurrent with P, NO donor treatment suppressed two important detrimental effects of P in mice, possibly by accelerating regeneration, rebalancing satellite cell quiescence and activation in dystrophy, and/or increasing perfusion. Results suggest that NO donors could improve current therapy for DMD.
ISSN:0363-6143
1522-1563
DOI:10.1152/ajpcell.00482.2010