Blue and Red Light-Induced Germination of Resting Spores in the Red-Tide Diatom Leptocylindrus danicus
Photophysiological and pharmacological approaches were used to examine light‐induced germination of resting spores in the red‐tide diatom Leptocylindrus danicus. The equal‐quantum action spectrum for photogermination had peaks at about 440 nm (blue light) and 680 nm (red light), which matched the ab...
Gespeichert in:
Veröffentlicht in: | Photochemistry and photobiology 2011-05, Vol.87 (3), p.590-597 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 597 |
---|---|
container_issue | 3 |
container_start_page | 590 |
container_title | Photochemistry and photobiology |
container_volume | 87 |
creator | Shikata, Tomoyuki Iseki, Mineo Matsunaga, Shigeru Higashi, Sho-ichi Kamei, Yasuhiro Watanabe, Masakatsu |
description | Photophysiological and pharmacological approaches were used to examine light‐induced germination of resting spores in the red‐tide diatom Leptocylindrus danicus. The equal‐quantum action spectrum for photogermination had peaks at about 440 nm (blue light) and 680 nm (red light), which matched the absorption spectrum of the resting spore chloroplast, as well as photosynthetic action spectra reported for other diatoms. DCMU, an inhibitor of photosynthetic electron flow near photosystem II, completely blocked photogermination. These results suggest that the photosynthetic system is involved in the photoreception process of light‐induced germination. Results of pharmacological studies of the downstream signal transduction pathway suggested that Ca2+ influx is the closest downstream neighbor, followed by steps involving calmodulin, nitric oxide synthase, guanylyl cyclase, protein‐tyrosine‐phosphatase, protein kinase C and actin polymerization and translation. |
doi_str_mv | 10.1111/j.1751-1097.2011.00914.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_863767766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611177681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6414-dca41bd4dd637b911de677290a54fb094dec31f7b3110f1d722ddfedb34eaf1d3</originalsourceid><addsrcrecordid>eNqNkkFv0zAYhi0EYt3gLyCLC1wS_NlOnEhcWGHdpAqqUQQ3y4mdzSVxip1o7b_HoaMHDqi-2Jaf97Hl70MIA0khjnebFEQGCZBSpJQApISUwNPdEzQ7HjxFM0IYJEWeZWfoPIQNIcBLAc_RGQWWUcryGWou29Fg5TS-NRov7d39kNw4PdZxtzC-s04Ntne4byIQBuvu8Ndt703A1uHh3kyxZG21wR-tGvoOL8126Ot9a532Y8BaOVuP4QV61qg2mJeP8wX6dvVpPb9Oll8WN_MPy6TOOfBE14pDpbnWORNVCaBNLgQticp4U5GSa1MzaETFAEgDWlCqdWN0xbhRcc8u0JuDd-v7X2N8sOxsqE3bKmf6McgieqMxzyP59r8kEEqznHNyKsoEYyeitCBZRF__g2760bv4O7KkRbyYlpOvOEC170PwppFbbzvl99Ekp1aQGzlVXE4Vl1MryD-tIHcx-urRP1ad0cfg39pH4P0BeLCt2Z8slqvrVVzEeHKI2zCY3TGu_E-ZCyYy-f3zQrLL9e2Pq9VcrthvRK7PKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928440293</pqid></control><display><type>article</type><title>Blue and Red Light-Induced Germination of Resting Spores in the Red-Tide Diatom Leptocylindrus danicus</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Shikata, Tomoyuki ; Iseki, Mineo ; Matsunaga, Shigeru ; Higashi, Sho-ichi ; Kamei, Yasuhiro ; Watanabe, Masakatsu</creator><creatorcontrib>Shikata, Tomoyuki ; Iseki, Mineo ; Matsunaga, Shigeru ; Higashi, Sho-ichi ; Kamei, Yasuhiro ; Watanabe, Masakatsu</creatorcontrib><description>Photophysiological and pharmacological approaches were used to examine light‐induced germination of resting spores in the red‐tide diatom Leptocylindrus danicus. The equal‐quantum action spectrum for photogermination had peaks at about 440 nm (blue light) and 680 nm (red light), which matched the absorption spectrum of the resting spore chloroplast, as well as photosynthetic action spectra reported for other diatoms. DCMU, an inhibitor of photosynthetic electron flow near photosystem II, completely blocked photogermination. These results suggest that the photosynthetic system is involved in the photoreception process of light‐induced germination. Results of pharmacological studies of the downstream signal transduction pathway suggested that Ca2+ influx is the closest downstream neighbor, followed by steps involving calmodulin, nitric oxide synthase, guanylyl cyclase, protein‐tyrosine‐phosphatase, protein kinase C and actin polymerization and translation.</description><identifier>ISSN: 0031-8655</identifier><identifier>ISSN: 1751-1097</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1111/j.1751-1097.2011.00914.x</identifier><identifier>PMID: 21352236</identifier><identifier>CODEN: PHCBAP</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Actins - metabolism ; Algae ; Bacillariophyceae ; Calcium - metabolism ; Calmodulin - metabolism ; Chloroplasts - metabolism ; Chloroplasts - radiation effects ; Culture Techniques ; Diatoms - metabolism ; Diuron - pharmacology ; Enzyme Inhibitors - pharmacology ; Germination ; Guanylate Cyclase - antagonists & inhibitors ; Guanylate Cyclase - metabolism ; Harmful Algal Bloom ; Leptocylindrus danicus ; Light ; Light Signal Transduction - radiation effects ; Nitric Oxide Synthase - antagonists & inhibitors ; Nitric Oxide Synthase - metabolism ; Photobiology ; Photochemical Processes - radiation effects ; Photosynthesis ; Photosynthesis - radiation effects ; Photosystem II Protein Complex - antagonists & inhibitors ; Photosystem II Protein Complex - metabolism ; Polymerization ; Protein Kinase C - antagonists & inhibitors ; Protein Kinase C - metabolism ; Protein Tyrosine Phosphatases - antagonists & inhibitors ; Protein Tyrosine Phosphatases - metabolism ; Signal transduction ; Spectrum Analysis ; Spores - metabolism ; Spores - radiation effects</subject><ispartof>Photochemistry and photobiology, 2011-05, Vol.87 (3), p.590-597</ispartof><rights>2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology</rights><rights>2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.</rights><rights>Copyright Blackwell Publishing Ltd. May/Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6414-dca41bd4dd637b911de677290a54fb094dec31f7b3110f1d722ddfedb34eaf1d3</citedby><cites>FETCH-LOGICAL-c6414-dca41bd4dd637b911de677290a54fb094dec31f7b3110f1d722ddfedb34eaf1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1751-1097.2011.00914.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1751-1097.2011.00914.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21352236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shikata, Tomoyuki</creatorcontrib><creatorcontrib>Iseki, Mineo</creatorcontrib><creatorcontrib>Matsunaga, Shigeru</creatorcontrib><creatorcontrib>Higashi, Sho-ichi</creatorcontrib><creatorcontrib>Kamei, Yasuhiro</creatorcontrib><creatorcontrib>Watanabe, Masakatsu</creatorcontrib><title>Blue and Red Light-Induced Germination of Resting Spores in the Red-Tide Diatom Leptocylindrus danicus</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>Photophysiological and pharmacological approaches were used to examine light‐induced germination of resting spores in the red‐tide diatom Leptocylindrus danicus. The equal‐quantum action spectrum for photogermination had peaks at about 440 nm (blue light) and 680 nm (red light), which matched the absorption spectrum of the resting spore chloroplast, as well as photosynthetic action spectra reported for other diatoms. DCMU, an inhibitor of photosynthetic electron flow near photosystem II, completely blocked photogermination. These results suggest that the photosynthetic system is involved in the photoreception process of light‐induced germination. Results of pharmacological studies of the downstream signal transduction pathway suggested that Ca2+ influx is the closest downstream neighbor, followed by steps involving calmodulin, nitric oxide synthase, guanylyl cyclase, protein‐tyrosine‐phosphatase, protein kinase C and actin polymerization and translation.</description><subject>Actins - metabolism</subject><subject>Algae</subject><subject>Bacillariophyceae</subject><subject>Calcium - metabolism</subject><subject>Calmodulin - metabolism</subject><subject>Chloroplasts - metabolism</subject><subject>Chloroplasts - radiation effects</subject><subject>Culture Techniques</subject><subject>Diatoms - metabolism</subject><subject>Diuron - pharmacology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Germination</subject><subject>Guanylate Cyclase - antagonists & inhibitors</subject><subject>Guanylate Cyclase - metabolism</subject><subject>Harmful Algal Bloom</subject><subject>Leptocylindrus danicus</subject><subject>Light</subject><subject>Light Signal Transduction - radiation effects</subject><subject>Nitric Oxide Synthase - antagonists & inhibitors</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Photobiology</subject><subject>Photochemical Processes - radiation effects</subject><subject>Photosynthesis</subject><subject>Photosynthesis - radiation effects</subject><subject>Photosystem II Protein Complex - antagonists & inhibitors</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Polymerization</subject><subject>Protein Kinase C - antagonists & inhibitors</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein Tyrosine Phosphatases - antagonists & inhibitors</subject><subject>Protein Tyrosine Phosphatases - metabolism</subject><subject>Signal transduction</subject><subject>Spectrum Analysis</subject><subject>Spores - metabolism</subject><subject>Spores - radiation effects</subject><issn>0031-8655</issn><issn>1751-1097</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkFv0zAYhi0EYt3gLyCLC1wS_NlOnEhcWGHdpAqqUQQ3y4mdzSVxip1o7b_HoaMHDqi-2Jaf97Hl70MIA0khjnebFEQGCZBSpJQApISUwNPdEzQ7HjxFM0IYJEWeZWfoPIQNIcBLAc_RGQWWUcryGWou29Fg5TS-NRov7d39kNw4PdZxtzC-s04Ntne4byIQBuvu8Ndt703A1uHh3kyxZG21wR-tGvoOL8126Ot9a532Y8BaOVuP4QV61qg2mJeP8wX6dvVpPb9Oll8WN_MPy6TOOfBE14pDpbnWORNVCaBNLgQticp4U5GSa1MzaETFAEgDWlCqdWN0xbhRcc8u0JuDd-v7X2N8sOxsqE3bKmf6McgieqMxzyP59r8kEEqznHNyKsoEYyeitCBZRF__g2760bv4O7KkRbyYlpOvOEC170PwppFbbzvl99Ekp1aQGzlVXE4Vl1MryD-tIHcx-urRP1ad0cfg39pH4P0BeLCt2Z8slqvrVVzEeHKI2zCY3TGu_E-ZCyYy-f3zQrLL9e2Pq9VcrthvRK7PKQ</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Shikata, Tomoyuki</creator><creator>Iseki, Mineo</creator><creator>Matsunaga, Shigeru</creator><creator>Higashi, Sho-ichi</creator><creator>Kamei, Yasuhiro</creator><creator>Watanabe, Masakatsu</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>201105</creationdate><title>Blue and Red Light-Induced Germination of Resting Spores in the Red-Tide Diatom Leptocylindrus danicus</title><author>Shikata, Tomoyuki ; Iseki, Mineo ; Matsunaga, Shigeru ; Higashi, Sho-ichi ; Kamei, Yasuhiro ; Watanabe, Masakatsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6414-dca41bd4dd637b911de677290a54fb094dec31f7b3110f1d722ddfedb34eaf1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Actins - metabolism</topic><topic>Algae</topic><topic>Bacillariophyceae</topic><topic>Calcium - metabolism</topic><topic>Calmodulin - metabolism</topic><topic>Chloroplasts - metabolism</topic><topic>Chloroplasts - radiation effects</topic><topic>Culture Techniques</topic><topic>Diatoms - metabolism</topic><topic>Diuron - pharmacology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Germination</topic><topic>Guanylate Cyclase - antagonists & inhibitors</topic><topic>Guanylate Cyclase - metabolism</topic><topic>Harmful Algal Bloom</topic><topic>Leptocylindrus danicus</topic><topic>Light</topic><topic>Light Signal Transduction - radiation effects</topic><topic>Nitric Oxide Synthase - antagonists & inhibitors</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Photobiology</topic><topic>Photochemical Processes - radiation effects</topic><topic>Photosynthesis</topic><topic>Photosynthesis - radiation effects</topic><topic>Photosystem II Protein Complex - antagonists & inhibitors</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Polymerization</topic><topic>Protein Kinase C - antagonists & inhibitors</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein Tyrosine Phosphatases - antagonists & inhibitors</topic><topic>Protein Tyrosine Phosphatases - metabolism</topic><topic>Signal transduction</topic><topic>Spectrum Analysis</topic><topic>Spores - metabolism</topic><topic>Spores - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shikata, Tomoyuki</creatorcontrib><creatorcontrib>Iseki, Mineo</creatorcontrib><creatorcontrib>Matsunaga, Shigeru</creatorcontrib><creatorcontrib>Higashi, Sho-ichi</creatorcontrib><creatorcontrib>Kamei, Yasuhiro</creatorcontrib><creatorcontrib>Watanabe, Masakatsu</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shikata, Tomoyuki</au><au>Iseki, Mineo</au><au>Matsunaga, Shigeru</au><au>Higashi, Sho-ichi</au><au>Kamei, Yasuhiro</au><au>Watanabe, Masakatsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blue and Red Light-Induced Germination of Resting Spores in the Red-Tide Diatom Leptocylindrus danicus</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2011-05</date><risdate>2011</risdate><volume>87</volume><issue>3</issue><spage>590</spage><epage>597</epage><pages>590-597</pages><issn>0031-8655</issn><issn>1751-1097</issn><eissn>1751-1097</eissn><coden>PHCBAP</coden><abstract>Photophysiological and pharmacological approaches were used to examine light‐induced germination of resting spores in the red‐tide diatom Leptocylindrus danicus. The equal‐quantum action spectrum for photogermination had peaks at about 440 nm (blue light) and 680 nm (red light), which matched the absorption spectrum of the resting spore chloroplast, as well as photosynthetic action spectra reported for other diatoms. DCMU, an inhibitor of photosynthetic electron flow near photosystem II, completely blocked photogermination. These results suggest that the photosynthetic system is involved in the photoreception process of light‐induced germination. Results of pharmacological studies of the downstream signal transduction pathway suggested that Ca2+ influx is the closest downstream neighbor, followed by steps involving calmodulin, nitric oxide synthase, guanylyl cyclase, protein‐tyrosine‐phosphatase, protein kinase C and actin polymerization and translation.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21352236</pmid><doi>10.1111/j.1751-1097.2011.00914.x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8655 |
ispartof | Photochemistry and photobiology, 2011-05, Vol.87 (3), p.590-597 |
issn | 0031-8655 1751-1097 1751-1097 |
language | eng |
recordid | cdi_proquest_miscellaneous_863767766 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Actins - metabolism Algae Bacillariophyceae Calcium - metabolism Calmodulin - metabolism Chloroplasts - metabolism Chloroplasts - radiation effects Culture Techniques Diatoms - metabolism Diuron - pharmacology Enzyme Inhibitors - pharmacology Germination Guanylate Cyclase - antagonists & inhibitors Guanylate Cyclase - metabolism Harmful Algal Bloom Leptocylindrus danicus Light Light Signal Transduction - radiation effects Nitric Oxide Synthase - antagonists & inhibitors Nitric Oxide Synthase - metabolism Photobiology Photochemical Processes - radiation effects Photosynthesis Photosynthesis - radiation effects Photosystem II Protein Complex - antagonists & inhibitors Photosystem II Protein Complex - metabolism Polymerization Protein Kinase C - antagonists & inhibitors Protein Kinase C - metabolism Protein Tyrosine Phosphatases - antagonists & inhibitors Protein Tyrosine Phosphatases - metabolism Signal transduction Spectrum Analysis Spores - metabolism Spores - radiation effects |
title | Blue and Red Light-Induced Germination of Resting Spores in the Red-Tide Diatom Leptocylindrus danicus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blue%20and%20Red%20Light-Induced%20Germination%20of%20Resting%20Spores%20in%20the%20Red-Tide%20Diatom%20Leptocylindrus%20danicus&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Shikata,%20Tomoyuki&rft.date=2011-05&rft.volume=87&rft.issue=3&rft.spage=590&rft.epage=597&rft.pages=590-597&rft.issn=0031-8655&rft.eissn=1751-1097&rft.coden=PHCBAP&rft_id=info:doi/10.1111/j.1751-1097.2011.00914.x&rft_dat=%3Cproquest_cross%3E2611177681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928440293&rft_id=info:pmid/21352236&rfr_iscdi=true |