Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle
Melatonin is a multifunctional molecule that mediates several circadian and seasonal reproductive processes. The exact role of melatonin in modulating reproduction, however, is not fully understood—especially its effects on the ovarian follicles and oocytes. This study was conducted to investigate t...
Gespeichert in:
Veröffentlicht in: | Molecular reproduction and development 2011-04, Vol.78 (4), p.250-262 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 262 |
---|---|
container_issue | 4 |
container_start_page | 250 |
container_title | Molecular reproduction and development |
container_volume | 78 |
creator | El-Raey, Mohamed Geshi, Masaya Somfai, Tamás Kaneda, Masahiro Hirako, Makoto Abdel-Ghaffar, Alaa E. Sosa, Gamal A. El-Roos, Mahmoud E.A. Abou Nagai, Takashi |
description | Melatonin is a multifunctional molecule that mediates several circadian and seasonal reproductive processes. The exact role of melatonin in modulating reproduction, however, is not fully understood—especially its effects on the ovarian follicles and oocytes. This study was conducted to investigate the expressions of the ASMT and melatonin‐receptor MTNR1A and MTNR1B genes in bovine oocytes and their cumulus cells, as well as the effects of melatonin on oocyte nuclear and cytoplasmic maturation in vitro. Cumulus‐oocyte complexes (COCs) from abattoir ovaries were cultured in TCM‐199 supplemented with melatonin at concentrations of 0, 10, 50, and 100 ng/ml. The expression of ASMT, MTNR1A, and MTNR1B genes was evaluated by RT‐PCR. Moreover, the effects of melatonin on cumulus cell expansion, nuclear maturation, mitochondrial characteristics and COCs steroidogenesis were investigated. Furthermore, the level of reactive oxygen species (ROS) was evaluated in denuded oocytes. Our study revealed that ASMT and MTNR1A genes were expressed in COCs, while the MTNR1B gene was expressed only in oocytes. Additionally, melatonin supplementation at 10 and 50 ng/ml to in vitro maturation medium significantly enhanced oocyte nuclear maturation, cumulus cell expansion and altered the mitochondrial distribution patterns, but had no effects on oocyte mitochondrial activity and COCs steroidogenesis. Melatonin‐treated oocytes had a significantly lower level of ROS than controls. The presence of melatonin receptors in COCs and its promoting effects on oocyte nuclear and cytoplasmic events, indicate the potentially important roles of this hormone in regulating bovine oocyte maturation. Moreover, the presence of ASMT transcript in COCs suggests the possible involvement of these cells in melatonin biosynthesis. Mol. Reprod. Dev. 78:250–262, 2011. © 2011 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/mrd.21295 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_863424809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>863424809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4585-5d36698ee5d23341101666ead8ffc95748b43179d3beb4c2f7bed5fc229af3ae3</originalsourceid><addsrcrecordid>eNp10Etv1DAQB_AIgegDDnwBlAtCPaT1M7GPqJSCVJ4tgpvl2BNqcOzFdkr3wmcnYXfLiZNn5N_MSP-qeoLRMUaInIzJHhNMJL9X7WMkRUM6ye8vNUMN4-TrXnWQ83eEkJQCPaz2CKYCY9buV7_PbpyFYKCOQz2C1yUGF-q8DuUassv13MxVbaZx8lOuYzTrMrdxXHm4hVzrYGtXcp2ihwVDuNbBuPBtR0ddpqSLi2H5vnElxaUwuhQPj6oHg_YZHm_fw-rzq7Or09fNxfvzN6cvLhrDuOANt7RtpQDgllDKMEa4bVvQVgyDkbxjomcUd9LSHnpmyND1YPlgCJF6oBroYfV8s3eV4s8JclGjywa81wHilJVoKSNMIDnLo400KeacYFCr5Ead1gojtaSt5rTV37Rn-3S7depHsHdyF-8Mnm2Bzkb7IS3R5H-OYcQpEbM72bhfzsP6_xfV208vd6ebzYTLBW7vJnT6odqOdlx9eXeuri4_SEQ_EnVJ_wDZZae5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863424809</pqid></control><display><type>article</type><title>Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>El-Raey, Mohamed ; Geshi, Masaya ; Somfai, Tamás ; Kaneda, Masahiro ; Hirako, Makoto ; Abdel-Ghaffar, Alaa E. ; Sosa, Gamal A. ; El-Roos, Mahmoud E.A. Abou ; Nagai, Takashi</creator><creatorcontrib>El-Raey, Mohamed ; Geshi, Masaya ; Somfai, Tamás ; Kaneda, Masahiro ; Hirako, Makoto ; Abdel-Ghaffar, Alaa E. ; Sosa, Gamal A. ; El-Roos, Mahmoud E.A. Abou ; Nagai, Takashi</creatorcontrib><description>Melatonin is a multifunctional molecule that mediates several circadian and seasonal reproductive processes. The exact role of melatonin in modulating reproduction, however, is not fully understood—especially its effects on the ovarian follicles and oocytes. This study was conducted to investigate the expressions of the ASMT and melatonin‐receptor MTNR1A and MTNR1B genes in bovine oocytes and their cumulus cells, as well as the effects of melatonin on oocyte nuclear and cytoplasmic maturation in vitro. Cumulus‐oocyte complexes (COCs) from abattoir ovaries were cultured in TCM‐199 supplemented with melatonin at concentrations of 0, 10, 50, and 100 ng/ml. The expression of ASMT, MTNR1A, and MTNR1B genes was evaluated by RT‐PCR. Moreover, the effects of melatonin on cumulus cell expansion, nuclear maturation, mitochondrial characteristics and COCs steroidogenesis were investigated. Furthermore, the level of reactive oxygen species (ROS) was evaluated in denuded oocytes. Our study revealed that ASMT and MTNR1A genes were expressed in COCs, while the MTNR1B gene was expressed only in oocytes. Additionally, melatonin supplementation at 10 and 50 ng/ml to in vitro maturation medium significantly enhanced oocyte nuclear maturation, cumulus cell expansion and altered the mitochondrial distribution patterns, but had no effects on oocyte mitochondrial activity and COCs steroidogenesis. Melatonin‐treated oocytes had a significantly lower level of ROS than controls. The presence of melatonin receptors in COCs and its promoting effects on oocyte nuclear and cytoplasmic events, indicate the potentially important roles of this hormone in regulating bovine oocyte maturation. Moreover, the presence of ASMT transcript in COCs suggests the possible involvement of these cells in melatonin biosynthesis. Mol. Reprod. Dev. 78:250–262, 2011. © 2011 Wiley‐Liss, Inc.</description><identifier>ISSN: 1040-452X</identifier><identifier>EISSN: 1098-2795</identifier><identifier>DOI: 10.1002/mrd.21295</identifier><identifier>PMID: 21381146</identifier><identifier>CODEN: MREDEE</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acetylserotonin O-Methyltransferase - metabolism ; Animals ; Biological and medical sciences ; Cattle ; Cell Nucleus - metabolism ; Cumulus Cells - cytology ; Cumulus Cells - enzymology ; Cytoplasm - metabolism ; Female ; Fundamental and applied biological sciences. Psychology ; Hormone metabolism and regulation ; Mammalian female genital system ; Melatonin - biosynthesis ; Mitochondria - metabolism ; Oocytes - cytology ; Oocytes - drug effects ; Oocytes - enzymology ; Oogenesis - physiology ; Reactive Oxygen Species - metabolism ; Receptor, Melatonin, MT1 - biosynthesis ; Receptor, Melatonin, MT2 - biosynthesis ; Reverse Transcriptase Polymerase Chain Reaction ; Vertebrates: reproduction</subject><ispartof>Molecular reproduction and development, 2011-04, Vol.78 (4), p.250-262</ispartof><rights>Copyright © 2011 Wiley‐Liss, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4585-5d36698ee5d23341101666ead8ffc95748b43179d3beb4c2f7bed5fc229af3ae3</citedby><cites>FETCH-LOGICAL-c4585-5d36698ee5d23341101666ead8ffc95748b43179d3beb4c2f7bed5fc229af3ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrd.21295$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrd.21295$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24105328$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21381146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>El-Raey, Mohamed</creatorcontrib><creatorcontrib>Geshi, Masaya</creatorcontrib><creatorcontrib>Somfai, Tamás</creatorcontrib><creatorcontrib>Kaneda, Masahiro</creatorcontrib><creatorcontrib>Hirako, Makoto</creatorcontrib><creatorcontrib>Abdel-Ghaffar, Alaa E.</creatorcontrib><creatorcontrib>Sosa, Gamal A.</creatorcontrib><creatorcontrib>El-Roos, Mahmoud E.A. Abou</creatorcontrib><creatorcontrib>Nagai, Takashi</creatorcontrib><title>Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle</title><title>Molecular reproduction and development</title><addtitle>Mol. Reprod. Dev</addtitle><description>Melatonin is a multifunctional molecule that mediates several circadian and seasonal reproductive processes. The exact role of melatonin in modulating reproduction, however, is not fully understood—especially its effects on the ovarian follicles and oocytes. This study was conducted to investigate the expressions of the ASMT and melatonin‐receptor MTNR1A and MTNR1B genes in bovine oocytes and their cumulus cells, as well as the effects of melatonin on oocyte nuclear and cytoplasmic maturation in vitro. Cumulus‐oocyte complexes (COCs) from abattoir ovaries were cultured in TCM‐199 supplemented with melatonin at concentrations of 0, 10, 50, and 100 ng/ml. The expression of ASMT, MTNR1A, and MTNR1B genes was evaluated by RT‐PCR. Moreover, the effects of melatonin on cumulus cell expansion, nuclear maturation, mitochondrial characteristics and COCs steroidogenesis were investigated. Furthermore, the level of reactive oxygen species (ROS) was evaluated in denuded oocytes. Our study revealed that ASMT and MTNR1A genes were expressed in COCs, while the MTNR1B gene was expressed only in oocytes. Additionally, melatonin supplementation at 10 and 50 ng/ml to in vitro maturation medium significantly enhanced oocyte nuclear maturation, cumulus cell expansion and altered the mitochondrial distribution patterns, but had no effects on oocyte mitochondrial activity and COCs steroidogenesis. Melatonin‐treated oocytes had a significantly lower level of ROS than controls. The presence of melatonin receptors in COCs and its promoting effects on oocyte nuclear and cytoplasmic events, indicate the potentially important roles of this hormone in regulating bovine oocyte maturation. Moreover, the presence of ASMT transcript in COCs suggests the possible involvement of these cells in melatonin biosynthesis. Mol. Reprod. Dev. 78:250–262, 2011. © 2011 Wiley‐Liss, Inc.</description><subject>Acetylserotonin O-Methyltransferase - metabolism</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cattle</subject><subject>Cell Nucleus - metabolism</subject><subject>Cumulus Cells - cytology</subject><subject>Cumulus Cells - enzymology</subject><subject>Cytoplasm - metabolism</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hormone metabolism and regulation</subject><subject>Mammalian female genital system</subject><subject>Melatonin - biosynthesis</subject><subject>Mitochondria - metabolism</subject><subject>Oocytes - cytology</subject><subject>Oocytes - drug effects</subject><subject>Oocytes - enzymology</subject><subject>Oogenesis - physiology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptor, Melatonin, MT1 - biosynthesis</subject><subject>Receptor, Melatonin, MT2 - biosynthesis</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Vertebrates: reproduction</subject><issn>1040-452X</issn><issn>1098-2795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10Etv1DAQB_AIgegDDnwBlAtCPaT1M7GPqJSCVJ4tgpvl2BNqcOzFdkr3wmcnYXfLiZNn5N_MSP-qeoLRMUaInIzJHhNMJL9X7WMkRUM6ye8vNUMN4-TrXnWQ83eEkJQCPaz2CKYCY9buV7_PbpyFYKCOQz2C1yUGF-q8DuUassv13MxVbaZx8lOuYzTrMrdxXHm4hVzrYGtXcp2ihwVDuNbBuPBtR0ddpqSLi2H5vnElxaUwuhQPj6oHg_YZHm_fw-rzq7Or09fNxfvzN6cvLhrDuOANt7RtpQDgllDKMEa4bVvQVgyDkbxjomcUd9LSHnpmyND1YPlgCJF6oBroYfV8s3eV4s8JclGjywa81wHilJVoKSNMIDnLo400KeacYFCr5Ead1gojtaSt5rTV37Rn-3S7depHsHdyF-8Mnm2Bzkb7IS3R5H-OYcQpEbM72bhfzsP6_xfV208vd6ebzYTLBW7vJnT6odqOdlx9eXeuri4_SEQ_EnVJ_wDZZae5</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>El-Raey, Mohamed</creator><creator>Geshi, Masaya</creator><creator>Somfai, Tamás</creator><creator>Kaneda, Masahiro</creator><creator>Hirako, Makoto</creator><creator>Abdel-Ghaffar, Alaa E.</creator><creator>Sosa, Gamal A.</creator><creator>El-Roos, Mahmoud E.A. Abou</creator><creator>Nagai, Takashi</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201104</creationdate><title>Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle</title><author>El-Raey, Mohamed ; Geshi, Masaya ; Somfai, Tamás ; Kaneda, Masahiro ; Hirako, Makoto ; Abdel-Ghaffar, Alaa E. ; Sosa, Gamal A. ; El-Roos, Mahmoud E.A. Abou ; Nagai, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4585-5d36698ee5d23341101666ead8ffc95748b43179d3beb4c2f7bed5fc229af3ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetylserotonin O-Methyltransferase - metabolism</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cattle</topic><topic>Cell Nucleus - metabolism</topic><topic>Cumulus Cells - cytology</topic><topic>Cumulus Cells - enzymology</topic><topic>Cytoplasm - metabolism</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hormone metabolism and regulation</topic><topic>Mammalian female genital system</topic><topic>Melatonin - biosynthesis</topic><topic>Mitochondria - metabolism</topic><topic>Oocytes - cytology</topic><topic>Oocytes - drug effects</topic><topic>Oocytes - enzymology</topic><topic>Oogenesis - physiology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptor, Melatonin, MT1 - biosynthesis</topic><topic>Receptor, Melatonin, MT2 - biosynthesis</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Vertebrates: reproduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Raey, Mohamed</creatorcontrib><creatorcontrib>Geshi, Masaya</creatorcontrib><creatorcontrib>Somfai, Tamás</creatorcontrib><creatorcontrib>Kaneda, Masahiro</creatorcontrib><creatorcontrib>Hirako, Makoto</creatorcontrib><creatorcontrib>Abdel-Ghaffar, Alaa E.</creatorcontrib><creatorcontrib>Sosa, Gamal A.</creatorcontrib><creatorcontrib>El-Roos, Mahmoud E.A. Abou</creatorcontrib><creatorcontrib>Nagai, Takashi</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular reproduction and development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Raey, Mohamed</au><au>Geshi, Masaya</au><au>Somfai, Tamás</au><au>Kaneda, Masahiro</au><au>Hirako, Makoto</au><au>Abdel-Ghaffar, Alaa E.</au><au>Sosa, Gamal A.</au><au>El-Roos, Mahmoud E.A. Abou</au><au>Nagai, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle</atitle><jtitle>Molecular reproduction and development</jtitle><addtitle>Mol. Reprod. Dev</addtitle><date>2011-04</date><risdate>2011</risdate><volume>78</volume><issue>4</issue><spage>250</spage><epage>262</epage><pages>250-262</pages><issn>1040-452X</issn><eissn>1098-2795</eissn><coden>MREDEE</coden><abstract>Melatonin is a multifunctional molecule that mediates several circadian and seasonal reproductive processes. The exact role of melatonin in modulating reproduction, however, is not fully understood—especially its effects on the ovarian follicles and oocytes. This study was conducted to investigate the expressions of the ASMT and melatonin‐receptor MTNR1A and MTNR1B genes in bovine oocytes and their cumulus cells, as well as the effects of melatonin on oocyte nuclear and cytoplasmic maturation in vitro. Cumulus‐oocyte complexes (COCs) from abattoir ovaries were cultured in TCM‐199 supplemented with melatonin at concentrations of 0, 10, 50, and 100 ng/ml. The expression of ASMT, MTNR1A, and MTNR1B genes was evaluated by RT‐PCR. Moreover, the effects of melatonin on cumulus cell expansion, nuclear maturation, mitochondrial characteristics and COCs steroidogenesis were investigated. Furthermore, the level of reactive oxygen species (ROS) was evaluated in denuded oocytes. Our study revealed that ASMT and MTNR1A genes were expressed in COCs, while the MTNR1B gene was expressed only in oocytes. Additionally, melatonin supplementation at 10 and 50 ng/ml to in vitro maturation medium significantly enhanced oocyte nuclear maturation, cumulus cell expansion and altered the mitochondrial distribution patterns, but had no effects on oocyte mitochondrial activity and COCs steroidogenesis. Melatonin‐treated oocytes had a significantly lower level of ROS than controls. The presence of melatonin receptors in COCs and its promoting effects on oocyte nuclear and cytoplasmic events, indicate the potentially important roles of this hormone in regulating bovine oocyte maturation. Moreover, the presence of ASMT transcript in COCs suggests the possible involvement of these cells in melatonin biosynthesis. Mol. Reprod. Dev. 78:250–262, 2011. © 2011 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21381146</pmid><doi>10.1002/mrd.21295</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-452X |
ispartof | Molecular reproduction and development, 2011-04, Vol.78 (4), p.250-262 |
issn | 1040-452X 1098-2795 |
language | eng |
recordid | cdi_proquest_miscellaneous_863424809 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acetylserotonin O-Methyltransferase - metabolism Animals Biological and medical sciences Cattle Cell Nucleus - metabolism Cumulus Cells - cytology Cumulus Cells - enzymology Cytoplasm - metabolism Female Fundamental and applied biological sciences. Psychology Hormone metabolism and regulation Mammalian female genital system Melatonin - biosynthesis Mitochondria - metabolism Oocytes - cytology Oocytes - drug effects Oocytes - enzymology Oogenesis - physiology Reactive Oxygen Species - metabolism Receptor, Melatonin, MT1 - biosynthesis Receptor, Melatonin, MT2 - biosynthesis Reverse Transcriptase Polymerase Chain Reaction Vertebrates: reproduction |
title | Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20melatonin%20synthesis%20in%20the%20cumulus%20oocyte%20complexes%20and%20its%20role%20in%20enhancing%20oocyte%20maturation%20in%20vitro%20in%20cattle&rft.jtitle=Molecular%20reproduction%20and%20development&rft.au=El-Raey,%20Mohamed&rft.date=2011-04&rft.volume=78&rft.issue=4&rft.spage=250&rft.epage=262&rft.pages=250-262&rft.issn=1040-452X&rft.eissn=1098-2795&rft.coden=MREDEE&rft_id=info:doi/10.1002/mrd.21295&rft_dat=%3Cproquest_cross%3E863424809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863424809&rft_id=info:pmid/21381146&rfr_iscdi=true |