A screen for Neurospora knockout mutants displaying growth rate dependent branch density
Branch density (the spatial distribution of branch initiation points along a growing hypha) in wild-type Neurospora has been shown to remain constant at different growth rates due to a hypothesized system which compensates for hyphal growth rate. Here we report the results of a survey of the Neurosp...
Gespeichert in:
Veröffentlicht in: | Fungal biology 2011-03, Vol.115 (3), p.296-301 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 301 |
---|---|
container_issue | 3 |
container_start_page | 296 |
container_title | Fungal biology |
container_volume | 115 |
creator | Watters, Michael K. Boersma, Michael Johnson, Melodie Reyes, Ciara Westrick, Evan Lindamood, Erik |
description | Branch density (the spatial distribution of branch initiation points along a growing hypha) in wild-type
Neurospora has been shown to remain constant at different growth rates due to a hypothesized system which compensates for hyphal growth rate. Here we report the results of a survey of the
Neurospora knockout library for mutants affecting this proposed growth rate compensation system. The mutants identified fail to maintain branching homeostasis at different growth rates, thus showing growth rate-dependent branch density. The gene functions highlighted by this screen are diverse with several emerging themes including: ubiquitin-binding proteins, kinases, metal binding/metal metabolism proteins, reactive oxygen species (ROS) control proteins, and clock-associated/clock-controlled proteins. Other than their common influence on branch density homeostasis, the relationships between these gene functions and how they interact to influence branching are unclear. |
doi_str_mv | 10.1016/j.funbio.2010.12.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_862783713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878614611000043</els_id><sourcerecordid>862783713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-766befaaf8910dc09548f16a14f5fdc4d9f525fdd4fd78dbcca2fe81adde4ec03</originalsourceid><addsrcrecordid>eNqFkUtvEzEQgC0EolXpP0DgG6cEj9frdS5IVcVLquAAlbhZXnucOk3sxfaC8u9xtKVH8MWj0TcPfUPIS2BrYCDf7tZ-jmNIa85OKb5m0D8h56AGtZIg-dPHWMgzclnKjrXXQac2w3NyxqHrRd_Jc_LjihabESP1KdMvOOdUppQNvY_J3qe50sNcTayFulCmvTmGuKXbnH7XO5pNRepwwugwVjpmE-1dS8QS6vEFeebNvuDlw39Bbj-8_379aXXz9ePn66ublRUw1NUg5YjeGK82wJxlm14oD9KA8L13VriN73mLnPBuUG601nCPCoxzKNCy7oK8WfpOOf2csVR9CMXifm8iprloJfmgugG6_5O96AYpBG-kWEjbbJSMXk85HEw-amD65F_v9OJfn_xr4Lr5b2WvHgbM4wHdY9Ff2w14vQDeJG22ORR9-611EKfb8B6gEe8WApuyXwGzLjZgtOhCRlu1S-HfO_wBspujzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>854376442</pqid></control><display><type>article</type><title>A screen for Neurospora knockout mutants displaying growth rate dependent branch density</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Watters, Michael K. ; Boersma, Michael ; Johnson, Melodie ; Reyes, Ciara ; Westrick, Evan ; Lindamood, Erik</creator><creatorcontrib>Watters, Michael K. ; Boersma, Michael ; Johnson, Melodie ; Reyes, Ciara ; Westrick, Evan ; Lindamood, Erik</creatorcontrib><description>Branch density (the spatial distribution of branch initiation points along a growing hypha) in wild-type
Neurospora has been shown to remain constant at different growth rates due to a hypothesized system which compensates for hyphal growth rate. Here we report the results of a survey of the
Neurospora knockout library for mutants affecting this proposed growth rate compensation system. The mutants identified fail to maintain branching homeostasis at different growth rates, thus showing growth rate-dependent branch density. The gene functions highlighted by this screen are diverse with several emerging themes including: ubiquitin-binding proteins, kinases, metal binding/metal metabolism proteins, reactive oxygen species (ROS) control proteins, and clock-associated/clock-controlled proteins. Other than their common influence on branch density homeostasis, the relationships between these gene functions and how they interact to influence branching are unclear.</description><identifier>ISSN: 1878-6146</identifier><identifier>EISSN: 1878-6162</identifier><identifier>DOI: 10.1016/j.funbio.2010.12.015</identifier><identifier>PMID: 21354536</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Branching ; Cadmium ; Culture Media ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene Deletion ; genes ; Growth rate ; Homeostasis ; Hypha ; Hyphae - growth & development ; Hyphae - ultrastructure ; kinases ; knockout mutants ; Knockouts ; Metabolism ; Metals ; Morphology ; Mutation ; Neurospora ; Neurospora crassa ; Neurospora crassa - genetics ; Neurospora crassa - growth & development ; Neurospora crassa - metabolism ; Neurospora crassa - ultrastructure ; Protein Binding ; Protein kinase ; proteins ; Reactive oxygen species ; Spatial distribution ; surveys</subject><ispartof>Fungal biology, 2011-03, Vol.115 (3), p.296-301</ispartof><rights>2011 The British Mycological Society</rights><rights>Copyright © 2011 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-766befaaf8910dc09548f16a14f5fdc4d9f525fdd4fd78dbcca2fe81adde4ec03</citedby><cites>FETCH-LOGICAL-c417t-766befaaf8910dc09548f16a14f5fdc4d9f525fdd4fd78dbcca2fe81adde4ec03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.funbio.2010.12.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21354536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watters, Michael K.</creatorcontrib><creatorcontrib>Boersma, Michael</creatorcontrib><creatorcontrib>Johnson, Melodie</creatorcontrib><creatorcontrib>Reyes, Ciara</creatorcontrib><creatorcontrib>Westrick, Evan</creatorcontrib><creatorcontrib>Lindamood, Erik</creatorcontrib><title>A screen for Neurospora knockout mutants displaying growth rate dependent branch density</title><title>Fungal biology</title><addtitle>Fungal Biol</addtitle><description>Branch density (the spatial distribution of branch initiation points along a growing hypha) in wild-type
Neurospora has been shown to remain constant at different growth rates due to a hypothesized system which compensates for hyphal growth rate. Here we report the results of a survey of the
Neurospora knockout library for mutants affecting this proposed growth rate compensation system. The mutants identified fail to maintain branching homeostasis at different growth rates, thus showing growth rate-dependent branch density. The gene functions highlighted by this screen are diverse with several emerging themes including: ubiquitin-binding proteins, kinases, metal binding/metal metabolism proteins, reactive oxygen species (ROS) control proteins, and clock-associated/clock-controlled proteins. Other than their common influence on branch density homeostasis, the relationships between these gene functions and how they interact to influence branching are unclear.</description><subject>Branching</subject><subject>Cadmium</subject><subject>Culture Media</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene Deletion</subject><subject>genes</subject><subject>Growth rate</subject><subject>Homeostasis</subject><subject>Hypha</subject><subject>Hyphae - growth & development</subject><subject>Hyphae - ultrastructure</subject><subject>kinases</subject><subject>knockout mutants</subject><subject>Knockouts</subject><subject>Metabolism</subject><subject>Metals</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Neurospora</subject><subject>Neurospora crassa</subject><subject>Neurospora crassa - genetics</subject><subject>Neurospora crassa - growth & development</subject><subject>Neurospora crassa - metabolism</subject><subject>Neurospora crassa - ultrastructure</subject><subject>Protein Binding</subject><subject>Protein kinase</subject><subject>proteins</subject><subject>Reactive oxygen species</subject><subject>Spatial distribution</subject><subject>surveys</subject><issn>1878-6146</issn><issn>1878-6162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEQgC0EolXpP0DgG6cEj9frdS5IVcVLquAAlbhZXnucOk3sxfaC8u9xtKVH8MWj0TcPfUPIS2BrYCDf7tZ-jmNIa85OKb5m0D8h56AGtZIg-dPHWMgzclnKjrXXQac2w3NyxqHrRd_Jc_LjihabESP1KdMvOOdUppQNvY_J3qe50sNcTayFulCmvTmGuKXbnH7XO5pNRepwwugwVjpmE-1dS8QS6vEFeebNvuDlw39Bbj-8_379aXXz9ePn66ublRUw1NUg5YjeGK82wJxlm14oD9KA8L13VriN73mLnPBuUG601nCPCoxzKNCy7oK8WfpOOf2csVR9CMXifm8iprloJfmgugG6_5O96AYpBG-kWEjbbJSMXk85HEw-amD65F_v9OJfn_xr4Lr5b2WvHgbM4wHdY9Ff2w14vQDeJG22ORR9-611EKfb8B6gEe8WApuyXwGzLjZgtOhCRlu1S-HfO_wBspujzw</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Watters, Michael K.</creator><creator>Boersma, Michael</creator><creator>Johnson, Melodie</creator><creator>Reyes, Ciara</creator><creator>Westrick, Evan</creator><creator>Lindamood, Erik</creator><general>Elsevier Ltd</general><general>[Amsterdam]: Elsevier</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>C1K</scope><scope>M7N</scope></search><sort><creationdate>20110301</creationdate><title>A screen for Neurospora knockout mutants displaying growth rate dependent branch density</title><author>Watters, Michael K. ; Boersma, Michael ; Johnson, Melodie ; Reyes, Ciara ; Westrick, Evan ; Lindamood, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-766befaaf8910dc09548f16a14f5fdc4d9f525fdd4fd78dbcca2fe81adde4ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Branching</topic><topic>Cadmium</topic><topic>Culture Media</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene Deletion</topic><topic>genes</topic><topic>Growth rate</topic><topic>Homeostasis</topic><topic>Hypha</topic><topic>Hyphae - growth & development</topic><topic>Hyphae - ultrastructure</topic><topic>kinases</topic><topic>knockout mutants</topic><topic>Knockouts</topic><topic>Metabolism</topic><topic>Metals</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Neurospora</topic><topic>Neurospora crassa</topic><topic>Neurospora crassa - genetics</topic><topic>Neurospora crassa - growth & development</topic><topic>Neurospora crassa - metabolism</topic><topic>Neurospora crassa - ultrastructure</topic><topic>Protein Binding</topic><topic>Protein kinase</topic><topic>proteins</topic><topic>Reactive oxygen species</topic><topic>Spatial distribution</topic><topic>surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watters, Michael K.</creatorcontrib><creatorcontrib>Boersma, Michael</creatorcontrib><creatorcontrib>Johnson, Melodie</creatorcontrib><creatorcontrib>Reyes, Ciara</creatorcontrib><creatorcontrib>Westrick, Evan</creatorcontrib><creatorcontrib>Lindamood, Erik</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Fungal biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watters, Michael K.</au><au>Boersma, Michael</au><au>Johnson, Melodie</au><au>Reyes, Ciara</au><au>Westrick, Evan</au><au>Lindamood, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A screen for Neurospora knockout mutants displaying growth rate dependent branch density</atitle><jtitle>Fungal biology</jtitle><addtitle>Fungal Biol</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>115</volume><issue>3</issue><spage>296</spage><epage>301</epage><pages>296-301</pages><issn>1878-6146</issn><eissn>1878-6162</eissn><abstract>Branch density (the spatial distribution of branch initiation points along a growing hypha) in wild-type
Neurospora has been shown to remain constant at different growth rates due to a hypothesized system which compensates for hyphal growth rate. Here we report the results of a survey of the
Neurospora knockout library for mutants affecting this proposed growth rate compensation system. The mutants identified fail to maintain branching homeostasis at different growth rates, thus showing growth rate-dependent branch density. The gene functions highlighted by this screen are diverse with several emerging themes including: ubiquitin-binding proteins, kinases, metal binding/metal metabolism proteins, reactive oxygen species (ROS) control proteins, and clock-associated/clock-controlled proteins. Other than their common influence on branch density homeostasis, the relationships between these gene functions and how they interact to influence branching are unclear.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21354536</pmid><doi>10.1016/j.funbio.2010.12.015</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1878-6146 |
ispartof | Fungal biology, 2011-03, Vol.115 (3), p.296-301 |
issn | 1878-6146 1878-6162 |
language | eng |
recordid | cdi_proquest_miscellaneous_862783713 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Branching Cadmium Culture Media Fungal Proteins - genetics Fungal Proteins - metabolism Gene Deletion genes Growth rate Homeostasis Hypha Hyphae - growth & development Hyphae - ultrastructure kinases knockout mutants Knockouts Metabolism Metals Morphology Mutation Neurospora Neurospora crassa Neurospora crassa - genetics Neurospora crassa - growth & development Neurospora crassa - metabolism Neurospora crassa - ultrastructure Protein Binding Protein kinase proteins Reactive oxygen species Spatial distribution surveys |
title | A screen for Neurospora knockout mutants displaying growth rate dependent branch density |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20screen%20for%20Neurospora%20knockout%20mutants%20displaying%20growth%20rate%20dependent%20branch%20density&rft.jtitle=Fungal%20biology&rft.au=Watters,%20Michael%20K.&rft.date=2011-03-01&rft.volume=115&rft.issue=3&rft.spage=296&rft.epage=301&rft.pages=296-301&rft.issn=1878-6146&rft.eissn=1878-6162&rft_id=info:doi/10.1016/j.funbio.2010.12.015&rft_dat=%3Cproquest_cross%3E862783713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=854376442&rft_id=info:pmid/21354536&rft_els_id=S1878614611000043&rfr_iscdi=true |