A screen for Neurospora knockout mutants displaying growth rate dependent branch density

Branch density (the spatial distribution of branch initiation points along a growing hypha) in wild-type Neurospora has been shown to remain constant at different growth rates due to a hypothesized system which compensates for hyphal growth rate. Here we report the results of a survey of the Neurosp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fungal biology 2011-03, Vol.115 (3), p.296-301
Hauptverfasser: Watters, Michael K., Boersma, Michael, Johnson, Melodie, Reyes, Ciara, Westrick, Evan, Lindamood, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue 3
container_start_page 296
container_title Fungal biology
container_volume 115
creator Watters, Michael K.
Boersma, Michael
Johnson, Melodie
Reyes, Ciara
Westrick, Evan
Lindamood, Erik
description Branch density (the spatial distribution of branch initiation points along a growing hypha) in wild-type Neurospora has been shown to remain constant at different growth rates due to a hypothesized system which compensates for hyphal growth rate. Here we report the results of a survey of the Neurospora knockout library for mutants affecting this proposed growth rate compensation system. The mutants identified fail to maintain branching homeostasis at different growth rates, thus showing growth rate-dependent branch density. The gene functions highlighted by this screen are diverse with several emerging themes including: ubiquitin-binding proteins, kinases, metal binding/metal metabolism proteins, reactive oxygen species (ROS) control proteins, and clock-associated/clock-controlled proteins. Other than their common influence on branch density homeostasis, the relationships between these gene functions and how they interact to influence branching are unclear.
doi_str_mv 10.1016/j.funbio.2010.12.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_862783713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878614611000043</els_id><sourcerecordid>862783713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-766befaaf8910dc09548f16a14f5fdc4d9f525fdd4fd78dbcca2fe81adde4ec03</originalsourceid><addsrcrecordid>eNqFkUtvEzEQgC0EolXpP0DgG6cEj9frdS5IVcVLquAAlbhZXnucOk3sxfaC8u9xtKVH8MWj0TcPfUPIS2BrYCDf7tZ-jmNIa85OKb5m0D8h56AGtZIg-dPHWMgzclnKjrXXQac2w3NyxqHrRd_Jc_LjihabESP1KdMvOOdUppQNvY_J3qe50sNcTayFulCmvTmGuKXbnH7XO5pNRepwwugwVjpmE-1dS8QS6vEFeebNvuDlw39Bbj-8_379aXXz9ePn66ublRUw1NUg5YjeGK82wJxlm14oD9KA8L13VriN73mLnPBuUG601nCPCoxzKNCy7oK8WfpOOf2csVR9CMXifm8iprloJfmgugG6_5O96AYpBG-kWEjbbJSMXk85HEw-amD65F_v9OJfn_xr4Lr5b2WvHgbM4wHdY9Ff2w14vQDeJG22ORR9-611EKfb8B6gEe8WApuyXwGzLjZgtOhCRlu1S-HfO_wBspujzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>854376442</pqid></control><display><type>article</type><title>A screen for Neurospora knockout mutants displaying growth rate dependent branch density</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Watters, Michael K. ; Boersma, Michael ; Johnson, Melodie ; Reyes, Ciara ; Westrick, Evan ; Lindamood, Erik</creator><creatorcontrib>Watters, Michael K. ; Boersma, Michael ; Johnson, Melodie ; Reyes, Ciara ; Westrick, Evan ; Lindamood, Erik</creatorcontrib><description>Branch density (the spatial distribution of branch initiation points along a growing hypha) in wild-type Neurospora has been shown to remain constant at different growth rates due to a hypothesized system which compensates for hyphal growth rate. Here we report the results of a survey of the Neurospora knockout library for mutants affecting this proposed growth rate compensation system. The mutants identified fail to maintain branching homeostasis at different growth rates, thus showing growth rate-dependent branch density. The gene functions highlighted by this screen are diverse with several emerging themes including: ubiquitin-binding proteins, kinases, metal binding/metal metabolism proteins, reactive oxygen species (ROS) control proteins, and clock-associated/clock-controlled proteins. Other than their common influence on branch density homeostasis, the relationships between these gene functions and how they interact to influence branching are unclear.</description><identifier>ISSN: 1878-6146</identifier><identifier>EISSN: 1878-6162</identifier><identifier>DOI: 10.1016/j.funbio.2010.12.015</identifier><identifier>PMID: 21354536</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Branching ; Cadmium ; Culture Media ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene Deletion ; genes ; Growth rate ; Homeostasis ; Hypha ; Hyphae - growth &amp; development ; Hyphae - ultrastructure ; kinases ; knockout mutants ; Knockouts ; Metabolism ; Metals ; Morphology ; Mutation ; Neurospora ; Neurospora crassa ; Neurospora crassa - genetics ; Neurospora crassa - growth &amp; development ; Neurospora crassa - metabolism ; Neurospora crassa - ultrastructure ; Protein Binding ; Protein kinase ; proteins ; Reactive oxygen species ; Spatial distribution ; surveys</subject><ispartof>Fungal biology, 2011-03, Vol.115 (3), p.296-301</ispartof><rights>2011 The British Mycological Society</rights><rights>Copyright © 2011 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-766befaaf8910dc09548f16a14f5fdc4d9f525fdd4fd78dbcca2fe81adde4ec03</citedby><cites>FETCH-LOGICAL-c417t-766befaaf8910dc09548f16a14f5fdc4d9f525fdd4fd78dbcca2fe81adde4ec03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.funbio.2010.12.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21354536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watters, Michael K.</creatorcontrib><creatorcontrib>Boersma, Michael</creatorcontrib><creatorcontrib>Johnson, Melodie</creatorcontrib><creatorcontrib>Reyes, Ciara</creatorcontrib><creatorcontrib>Westrick, Evan</creatorcontrib><creatorcontrib>Lindamood, Erik</creatorcontrib><title>A screen for Neurospora knockout mutants displaying growth rate dependent branch density</title><title>Fungal biology</title><addtitle>Fungal Biol</addtitle><description>Branch density (the spatial distribution of branch initiation points along a growing hypha) in wild-type Neurospora has been shown to remain constant at different growth rates due to a hypothesized system which compensates for hyphal growth rate. Here we report the results of a survey of the Neurospora knockout library for mutants affecting this proposed growth rate compensation system. The mutants identified fail to maintain branching homeostasis at different growth rates, thus showing growth rate-dependent branch density. The gene functions highlighted by this screen are diverse with several emerging themes including: ubiquitin-binding proteins, kinases, metal binding/metal metabolism proteins, reactive oxygen species (ROS) control proteins, and clock-associated/clock-controlled proteins. Other than their common influence on branch density homeostasis, the relationships between these gene functions and how they interact to influence branching are unclear.</description><subject>Branching</subject><subject>Cadmium</subject><subject>Culture Media</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene Deletion</subject><subject>genes</subject><subject>Growth rate</subject><subject>Homeostasis</subject><subject>Hypha</subject><subject>Hyphae - growth &amp; development</subject><subject>Hyphae - ultrastructure</subject><subject>kinases</subject><subject>knockout mutants</subject><subject>Knockouts</subject><subject>Metabolism</subject><subject>Metals</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Neurospora</subject><subject>Neurospora crassa</subject><subject>Neurospora crassa - genetics</subject><subject>Neurospora crassa - growth &amp; development</subject><subject>Neurospora crassa - metabolism</subject><subject>Neurospora crassa - ultrastructure</subject><subject>Protein Binding</subject><subject>Protein kinase</subject><subject>proteins</subject><subject>Reactive oxygen species</subject><subject>Spatial distribution</subject><subject>surveys</subject><issn>1878-6146</issn><issn>1878-6162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEQgC0EolXpP0DgG6cEj9frdS5IVcVLquAAlbhZXnucOk3sxfaC8u9xtKVH8MWj0TcPfUPIS2BrYCDf7tZ-jmNIa85OKb5m0D8h56AGtZIg-dPHWMgzclnKjrXXQac2w3NyxqHrRd_Jc_LjihabESP1KdMvOOdUppQNvY_J3qe50sNcTayFulCmvTmGuKXbnH7XO5pNRepwwugwVjpmE-1dS8QS6vEFeebNvuDlw39Bbj-8_379aXXz9ePn66ublRUw1NUg5YjeGK82wJxlm14oD9KA8L13VriN73mLnPBuUG601nCPCoxzKNCy7oK8WfpOOf2csVR9CMXifm8iprloJfmgugG6_5O96AYpBG-kWEjbbJSMXk85HEw-amD65F_v9OJfn_xr4Lr5b2WvHgbM4wHdY9Ff2w14vQDeJG22ORR9-611EKfb8B6gEe8WApuyXwGzLjZgtOhCRlu1S-HfO_wBspujzw</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Watters, Michael K.</creator><creator>Boersma, Michael</creator><creator>Johnson, Melodie</creator><creator>Reyes, Ciara</creator><creator>Westrick, Evan</creator><creator>Lindamood, Erik</creator><general>Elsevier Ltd</general><general>[Amsterdam]: Elsevier</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>C1K</scope><scope>M7N</scope></search><sort><creationdate>20110301</creationdate><title>A screen for Neurospora knockout mutants displaying growth rate dependent branch density</title><author>Watters, Michael K. ; Boersma, Michael ; Johnson, Melodie ; Reyes, Ciara ; Westrick, Evan ; Lindamood, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-766befaaf8910dc09548f16a14f5fdc4d9f525fdd4fd78dbcca2fe81adde4ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Branching</topic><topic>Cadmium</topic><topic>Culture Media</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene Deletion</topic><topic>genes</topic><topic>Growth rate</topic><topic>Homeostasis</topic><topic>Hypha</topic><topic>Hyphae - growth &amp; development</topic><topic>Hyphae - ultrastructure</topic><topic>kinases</topic><topic>knockout mutants</topic><topic>Knockouts</topic><topic>Metabolism</topic><topic>Metals</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Neurospora</topic><topic>Neurospora crassa</topic><topic>Neurospora crassa - genetics</topic><topic>Neurospora crassa - growth &amp; development</topic><topic>Neurospora crassa - metabolism</topic><topic>Neurospora crassa - ultrastructure</topic><topic>Protein Binding</topic><topic>Protein kinase</topic><topic>proteins</topic><topic>Reactive oxygen species</topic><topic>Spatial distribution</topic><topic>surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watters, Michael K.</creatorcontrib><creatorcontrib>Boersma, Michael</creatorcontrib><creatorcontrib>Johnson, Melodie</creatorcontrib><creatorcontrib>Reyes, Ciara</creatorcontrib><creatorcontrib>Westrick, Evan</creatorcontrib><creatorcontrib>Lindamood, Erik</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Fungal biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watters, Michael K.</au><au>Boersma, Michael</au><au>Johnson, Melodie</au><au>Reyes, Ciara</au><au>Westrick, Evan</au><au>Lindamood, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A screen for Neurospora knockout mutants displaying growth rate dependent branch density</atitle><jtitle>Fungal biology</jtitle><addtitle>Fungal Biol</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>115</volume><issue>3</issue><spage>296</spage><epage>301</epage><pages>296-301</pages><issn>1878-6146</issn><eissn>1878-6162</eissn><abstract>Branch density (the spatial distribution of branch initiation points along a growing hypha) in wild-type Neurospora has been shown to remain constant at different growth rates due to a hypothesized system which compensates for hyphal growth rate. Here we report the results of a survey of the Neurospora knockout library for mutants affecting this proposed growth rate compensation system. The mutants identified fail to maintain branching homeostasis at different growth rates, thus showing growth rate-dependent branch density. The gene functions highlighted by this screen are diverse with several emerging themes including: ubiquitin-binding proteins, kinases, metal binding/metal metabolism proteins, reactive oxygen species (ROS) control proteins, and clock-associated/clock-controlled proteins. Other than their common influence on branch density homeostasis, the relationships between these gene functions and how they interact to influence branching are unclear.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21354536</pmid><doi>10.1016/j.funbio.2010.12.015</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1878-6146
ispartof Fungal biology, 2011-03, Vol.115 (3), p.296-301
issn 1878-6146
1878-6162
language eng
recordid cdi_proquest_miscellaneous_862783713
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Branching
Cadmium
Culture Media
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene Deletion
genes
Growth rate
Homeostasis
Hypha
Hyphae - growth & development
Hyphae - ultrastructure
kinases
knockout mutants
Knockouts
Metabolism
Metals
Morphology
Mutation
Neurospora
Neurospora crassa
Neurospora crassa - genetics
Neurospora crassa - growth & development
Neurospora crassa - metabolism
Neurospora crassa - ultrastructure
Protein Binding
Protein kinase
proteins
Reactive oxygen species
Spatial distribution
surveys
title A screen for Neurospora knockout mutants displaying growth rate dependent branch density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20screen%20for%20Neurospora%20knockout%20mutants%20displaying%20growth%20rate%20dependent%20branch%20density&rft.jtitle=Fungal%20biology&rft.au=Watters,%20Michael%20K.&rft.date=2011-03-01&rft.volume=115&rft.issue=3&rft.spage=296&rft.epage=301&rft.pages=296-301&rft.issn=1878-6146&rft.eissn=1878-6162&rft_id=info:doi/10.1016/j.funbio.2010.12.015&rft_dat=%3Cproquest_cross%3E862783713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=854376442&rft_id=info:pmid/21354536&rft_els_id=S1878614611000043&rfr_iscdi=true