Evolving specificity from variability for protein interaction domains

An important question in modular domain–peptide interactions, which play crucial roles in many biological processes, is how the diverse specificities exhibited by different members of a domain family are encoded in a common scaffold. Analysis of the Src homology (SH) 2 family has revealed that its s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in biochemical sciences (Amsterdam. Regular ed.) 2011-04, Vol.36 (4), p.183-190
Hauptverfasser: Kaneko, Tomonori, Sidhu, Sachdev S., Li, Shawn S.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An important question in modular domain–peptide interactions, which play crucial roles in many biological processes, is how the diverse specificities exhibited by different members of a domain family are encoded in a common scaffold. Analysis of the Src homology (SH) 2 family has revealed that its specificity is determined, in large part, by the configuration of surface loops that regulate ligand access to binding pockets. In a distinct manner, SH3 domains employ loops for ligand recognition. The PDZ domain, in contrast, achieves specificity by co-evolution of binding-site residues. Thus, the conformational and sequence variability afforded by surface loops and binding sites provides a general mechanism by which to encode the wide spectrum of specificities observed for modular protein interaction domains.
ISSN:0968-0004
1362-4326
DOI:10.1016/j.tibs.2010.12.001