Concepts and principles in the analysis of brain networks
The brain is a large‐scale network, operating at multiple levels of information processing ranging from neurons, to local circuits, to systems of brain areas. Recent advances in the mathematics of graph theory have provided tools with which to study networks. These tools can be employed to understan...
Gespeichert in:
Veröffentlicht in: | Annals of the New York Academy of Sciences 2011-04, Vol.1224 (1), p.126-146 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146 |
---|---|
container_issue | 1 |
container_start_page | 126 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 1224 |
creator | Wig, Gagan S. Schlaggar, Bradley L. Petersen, Steven E. |
description | The brain is a large‐scale network, operating at multiple levels of information processing ranging from neurons, to local circuits, to systems of brain areas. Recent advances in the mathematics of graph theory have provided tools with which to study networks. These tools can be employed to understand how the brain's behavioral repertoire is mediated by the interactions of objects of information processing. Within the graph‐theoretic framework, networks are defined by independent objects (nodes) and the relationships shared between them (edges). Importantly, the accurate incorporation of graph theory into the study of brain networks mandates careful consideration of the assumptions, constraints, and principles of both the mathematics and the underlying neurobiology. This review focuses on understanding these principles and how they guide what constitutes a brain network and its elements, specifically focusing on resting‐state correlations in humans. We argue that approaches that fail to take the principles of graph theory into consideration and do not reflect the underlying neurobiological properties of the brain will likely mischaracterize brain network structure and function. |
doi_str_mv | 10.1111/j.1749-6632.2010.05947.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_862006715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>862006715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4687-179d248b5b29f270677ce783aa0fd25ec7c933f74b6639be24fec7f7aacf91c83</originalsourceid><addsrcrecordid>eNqNkU9PGzEQxS1URELoV0Ar9dBeNvjf7qwvlVBUAiKCQ0urcrG8jq1u2OwGeyOSb88sgRw4VPhi6_nn55k3hCSMjhmus8WYgVRpngs-5hRVmikJ480BGe4vPpEhpQBpobgYkOMYF5QyXkg4IgPOZJFzpYZETdrGulUXE9PMk1WoGlutaheTqkm6fw5VU29jFZPWJ2UwqDaue2rDQzwhh97U0X1-3Ufk7uLHr8llOrudXk3OZ6mVeQEpAzXnsiizkivPgeYA1kEhjKF-zjNnwSohPMgSi1al49Kj5sEY6xWzhRiRrzvfVWgf1y52ellF6-raNK5dR42NUHRlGZLf_ksyisWApEIi-uUdumjXAXtFCrDEjNGsp4odZUMbY3BeY0BLE7ZopftB6IXu89Z93rofhH4ZhN7g09PXD9bl0s33D9-SR-D7Dniqarf9sLG--Xv-sz-iQbozqGLnNnsDEx50DgIy_edmqpW6h_z3daavxTMbt6Rl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767751054</pqid></control><display><type>article</type><title>Concepts and principles in the analysis of brain networks</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Wig, Gagan S. ; Schlaggar, Bradley L. ; Petersen, Steven E.</creator><creatorcontrib>Wig, Gagan S. ; Schlaggar, Bradley L. ; Petersen, Steven E.</creatorcontrib><description>The brain is a large‐scale network, operating at multiple levels of information processing ranging from neurons, to local circuits, to systems of brain areas. Recent advances in the mathematics of graph theory have provided tools with which to study networks. These tools can be employed to understand how the brain's behavioral repertoire is mediated by the interactions of objects of information processing. Within the graph‐theoretic framework, networks are defined by independent objects (nodes) and the relationships shared between them (edges). Importantly, the accurate incorporation of graph theory into the study of brain networks mandates careful consideration of the assumptions, constraints, and principles of both the mathematics and the underlying neurobiology. This review focuses on understanding these principles and how they guide what constitutes a brain network and its elements, specifically focusing on resting‐state correlations in humans. We argue that approaches that fail to take the principles of graph theory into consideration and do not reflect the underlying neurobiological properties of the brain will likely mischaracterize brain network structure and function.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.2010.05947.x</identifier><identifier>PMID: 21486299</identifier><identifier>CODEN: ANYAA9</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Animals ; Brain ; Brain - anatomy & histology ; Brain Mapping - methods ; brain networks ; Circuits ; Concept Formation - physiology ; Functional anatomy ; Graph theory ; Humans ; Image Interpretation, Computer-Assisted ; Information processing ; Models, Neurological ; Models, Theoretical ; Nerve Net - anatomy & histology ; Nerve Net - physiology ; Nervous system ; Neural Pathways - physiology ; Neurons ; Neurosciences ; Nodes ; Principles ; resting state functional connectivity ; Structure-function relationships</subject><ispartof>Annals of the New York Academy of Sciences, 2011-04, Vol.1224 (1), p.126-146</ispartof><rights>2011 New York Academy of Sciences</rights><rights>2011 New York Academy of Sciences.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4687-179d248b5b29f270677ce783aa0fd25ec7c933f74b6639be24fec7f7aacf91c83</citedby><cites>FETCH-LOGICAL-c4687-179d248b5b29f270677ce783aa0fd25ec7c933f74b6639be24fec7f7aacf91c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1749-6632.2010.05947.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1749-6632.2010.05947.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21486299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wig, Gagan S.</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><title>Concepts and principles in the analysis of brain networks</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>The brain is a large‐scale network, operating at multiple levels of information processing ranging from neurons, to local circuits, to systems of brain areas. Recent advances in the mathematics of graph theory have provided tools with which to study networks. These tools can be employed to understand how the brain's behavioral repertoire is mediated by the interactions of objects of information processing. Within the graph‐theoretic framework, networks are defined by independent objects (nodes) and the relationships shared between them (edges). Importantly, the accurate incorporation of graph theory into the study of brain networks mandates careful consideration of the assumptions, constraints, and principles of both the mathematics and the underlying neurobiology. This review focuses on understanding these principles and how they guide what constitutes a brain network and its elements, specifically focusing on resting‐state correlations in humans. We argue that approaches that fail to take the principles of graph theory into consideration and do not reflect the underlying neurobiological properties of the brain will likely mischaracterize brain network structure and function.</description><subject>Animals</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain Mapping - methods</subject><subject>brain networks</subject><subject>Circuits</subject><subject>Concept Formation - physiology</subject><subject>Functional anatomy</subject><subject>Graph theory</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Information processing</subject><subject>Models, Neurological</subject><subject>Models, Theoretical</subject><subject>Nerve Net - anatomy & histology</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Neural Pathways - physiology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Nodes</subject><subject>Principles</subject><subject>resting state functional connectivity</subject><subject>Structure-function relationships</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9PGzEQxS1URELoV0Ar9dBeNvjf7qwvlVBUAiKCQ0urcrG8jq1u2OwGeyOSb88sgRw4VPhi6_nn55k3hCSMjhmus8WYgVRpngs-5hRVmikJ480BGe4vPpEhpQBpobgYkOMYF5QyXkg4IgPOZJFzpYZETdrGulUXE9PMk1WoGlutaheTqkm6fw5VU29jFZPWJ2UwqDaue2rDQzwhh97U0X1-3Ufk7uLHr8llOrudXk3OZ6mVeQEpAzXnsiizkivPgeYA1kEhjKF-zjNnwSohPMgSi1al49Kj5sEY6xWzhRiRrzvfVWgf1y52ellF6-raNK5dR42NUHRlGZLf_ksyisWApEIi-uUdumjXAXtFCrDEjNGsp4odZUMbY3BeY0BLE7ZopftB6IXu89Z93rofhH4ZhN7g09PXD9bl0s33D9-SR-D7Dniqarf9sLG--Xv-sz-iQbozqGLnNnsDEx50DgIy_edmqpW6h_z3daavxTMbt6Rl</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Wig, Gagan S.</creator><creator>Schlaggar, Bradley L.</creator><creator>Petersen, Steven E.</creator><general>Blackwell Publishing Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201104</creationdate><title>Concepts and principles in the analysis of brain networks</title><author>Wig, Gagan S. ; Schlaggar, Bradley L. ; Petersen, Steven E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4687-179d248b5b29f270677ce783aa0fd25ec7c933f74b6639be24fec7f7aacf91c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain Mapping - methods</topic><topic>brain networks</topic><topic>Circuits</topic><topic>Concept Formation - physiology</topic><topic>Functional anatomy</topic><topic>Graph theory</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Information processing</topic><topic>Models, Neurological</topic><topic>Models, Theoretical</topic><topic>Nerve Net - anatomy & histology</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Neural Pathways - physiology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Nodes</topic><topic>Principles</topic><topic>resting state functional connectivity</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wig, Gagan S.</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wig, Gagan S.</au><au>Schlaggar, Bradley L.</au><au>Petersen, Steven E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concepts and principles in the analysis of brain networks</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2011-04</date><risdate>2011</risdate><volume>1224</volume><issue>1</issue><spage>126</spage><epage>146</epage><pages>126-146</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><coden>ANYAA9</coden><abstract>The brain is a large‐scale network, operating at multiple levels of information processing ranging from neurons, to local circuits, to systems of brain areas. Recent advances in the mathematics of graph theory have provided tools with which to study networks. These tools can be employed to understand how the brain's behavioral repertoire is mediated by the interactions of objects of information processing. Within the graph‐theoretic framework, networks are defined by independent objects (nodes) and the relationships shared between them (edges). Importantly, the accurate incorporation of graph theory into the study of brain networks mandates careful consideration of the assumptions, constraints, and principles of both the mathematics and the underlying neurobiology. This review focuses on understanding these principles and how they guide what constitutes a brain network and its elements, specifically focusing on resting‐state correlations in humans. We argue that approaches that fail to take the principles of graph theory into consideration and do not reflect the underlying neurobiological properties of the brain will likely mischaracterize brain network structure and function.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>21486299</pmid><doi>10.1111/j.1749-6632.2010.05947.x</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2011-04, Vol.1224 (1), p.126-146 |
issn | 0077-8923 1749-6632 |
language | eng |
recordid | cdi_proquest_miscellaneous_862006715 |
source | MEDLINE; Wiley Journals |
subjects | Animals Brain Brain - anatomy & histology Brain Mapping - methods brain networks Circuits Concept Formation - physiology Functional anatomy Graph theory Humans Image Interpretation, Computer-Assisted Information processing Models, Neurological Models, Theoretical Nerve Net - anatomy & histology Nerve Net - physiology Nervous system Neural Pathways - physiology Neurons Neurosciences Nodes Principles resting state functional connectivity Structure-function relationships |
title | Concepts and principles in the analysis of brain networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concepts%20and%20principles%20in%20the%20analysis%20of%20brain%20networks&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Wig,%20Gagan%20S.&rft.date=2011-04&rft.volume=1224&rft.issue=1&rft.spage=126&rft.epage=146&rft.pages=126-146&rft.issn=0077-8923&rft.eissn=1749-6632&rft.coden=ANYAA9&rft_id=info:doi/10.1111/j.1749-6632.2010.05947.x&rft_dat=%3Cproquest_cross%3E862006715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767751054&rft_id=info:pmid/21486299&rfr_iscdi=true |