Concepts and principles in the analysis of brain networks

The brain is a large‐scale network, operating at multiple levels of information processing ranging from neurons, to local circuits, to systems of brain areas. Recent advances in the mathematics of graph theory have provided tools with which to study networks. These tools can be employed to understan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2011-04, Vol.1224 (1), p.126-146
Hauptverfasser: Wig, Gagan S., Schlaggar, Bradley L., Petersen, Steven E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 1
container_start_page 126
container_title Annals of the New York Academy of Sciences
container_volume 1224
creator Wig, Gagan S.
Schlaggar, Bradley L.
Petersen, Steven E.
description The brain is a large‐scale network, operating at multiple levels of information processing ranging from neurons, to local circuits, to systems of brain areas. Recent advances in the mathematics of graph theory have provided tools with which to study networks. These tools can be employed to understand how the brain's behavioral repertoire is mediated by the interactions of objects of information processing. Within the graph‐theoretic framework, networks are defined by independent objects (nodes) and the relationships shared between them (edges). Importantly, the accurate incorporation of graph theory into the study of brain networks mandates careful consideration of the assumptions, constraints, and principles of both the mathematics and the underlying neurobiology. This review focuses on understanding these principles and how they guide what constitutes a brain network and its elements, specifically focusing on resting‐state correlations in humans. We argue that approaches that fail to take the principles of graph theory into consideration and do not reflect the underlying neurobiological properties of the brain will likely mischaracterize brain network structure and function.
doi_str_mv 10.1111/j.1749-6632.2010.05947.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_862006715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>862006715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4687-179d248b5b29f270677ce783aa0fd25ec7c933f74b6639be24fec7f7aacf91c83</originalsourceid><addsrcrecordid>eNqNkU9PGzEQxS1URELoV0Ar9dBeNvjf7qwvlVBUAiKCQ0urcrG8jq1u2OwGeyOSb88sgRw4VPhi6_nn55k3hCSMjhmus8WYgVRpngs-5hRVmikJ480BGe4vPpEhpQBpobgYkOMYF5QyXkg4IgPOZJFzpYZETdrGulUXE9PMk1WoGlutaheTqkm6fw5VU29jFZPWJ2UwqDaue2rDQzwhh97U0X1-3Ufk7uLHr8llOrudXk3OZ6mVeQEpAzXnsiizkivPgeYA1kEhjKF-zjNnwSohPMgSi1al49Kj5sEY6xWzhRiRrzvfVWgf1y52ellF6-raNK5dR42NUHRlGZLf_ksyisWApEIi-uUdumjXAXtFCrDEjNGsp4odZUMbY3BeY0BLE7ZopftB6IXu89Z93rofhH4ZhN7g09PXD9bl0s33D9-SR-D7Dniqarf9sLG--Xv-sz-iQbozqGLnNnsDEx50DgIy_edmqpW6h_z3daavxTMbt6Rl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767751054</pqid></control><display><type>article</type><title>Concepts and principles in the analysis of brain networks</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Wig, Gagan S. ; Schlaggar, Bradley L. ; Petersen, Steven E.</creator><creatorcontrib>Wig, Gagan S. ; Schlaggar, Bradley L. ; Petersen, Steven E.</creatorcontrib><description>The brain is a large‐scale network, operating at multiple levels of information processing ranging from neurons, to local circuits, to systems of brain areas. Recent advances in the mathematics of graph theory have provided tools with which to study networks. These tools can be employed to understand how the brain's behavioral repertoire is mediated by the interactions of objects of information processing. Within the graph‐theoretic framework, networks are defined by independent objects (nodes) and the relationships shared between them (edges). Importantly, the accurate incorporation of graph theory into the study of brain networks mandates careful consideration of the assumptions, constraints, and principles of both the mathematics and the underlying neurobiology. This review focuses on understanding these principles and how they guide what constitutes a brain network and its elements, specifically focusing on resting‐state correlations in humans. We argue that approaches that fail to take the principles of graph theory into consideration and do not reflect the underlying neurobiological properties of the brain will likely mischaracterize brain network structure and function.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.2010.05947.x</identifier><identifier>PMID: 21486299</identifier><identifier>CODEN: ANYAA9</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Animals ; Brain ; Brain - anatomy &amp; histology ; Brain Mapping - methods ; brain networks ; Circuits ; Concept Formation - physiology ; Functional anatomy ; Graph theory ; Humans ; Image Interpretation, Computer-Assisted ; Information processing ; Models, Neurological ; Models, Theoretical ; Nerve Net - anatomy &amp; histology ; Nerve Net - physiology ; Nervous system ; Neural Pathways - physiology ; Neurons ; Neurosciences ; Nodes ; Principles ; resting state functional connectivity ; Structure-function relationships</subject><ispartof>Annals of the New York Academy of Sciences, 2011-04, Vol.1224 (1), p.126-146</ispartof><rights>2011 New York Academy of Sciences</rights><rights>2011 New York Academy of Sciences.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4687-179d248b5b29f270677ce783aa0fd25ec7c933f74b6639be24fec7f7aacf91c83</citedby><cites>FETCH-LOGICAL-c4687-179d248b5b29f270677ce783aa0fd25ec7c933f74b6639be24fec7f7aacf91c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1749-6632.2010.05947.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1749-6632.2010.05947.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21486299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wig, Gagan S.</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><title>Concepts and principles in the analysis of brain networks</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>The brain is a large‐scale network, operating at multiple levels of information processing ranging from neurons, to local circuits, to systems of brain areas. Recent advances in the mathematics of graph theory have provided tools with which to study networks. These tools can be employed to understand how the brain's behavioral repertoire is mediated by the interactions of objects of information processing. Within the graph‐theoretic framework, networks are defined by independent objects (nodes) and the relationships shared between them (edges). Importantly, the accurate incorporation of graph theory into the study of brain networks mandates careful consideration of the assumptions, constraints, and principles of both the mathematics and the underlying neurobiology. This review focuses on understanding these principles and how they guide what constitutes a brain network and its elements, specifically focusing on resting‐state correlations in humans. We argue that approaches that fail to take the principles of graph theory into consideration and do not reflect the underlying neurobiological properties of the brain will likely mischaracterize brain network structure and function.</description><subject>Animals</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain Mapping - methods</subject><subject>brain networks</subject><subject>Circuits</subject><subject>Concept Formation - physiology</subject><subject>Functional anatomy</subject><subject>Graph theory</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Information processing</subject><subject>Models, Neurological</subject><subject>Models, Theoretical</subject><subject>Nerve Net - anatomy &amp; histology</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Neural Pathways - physiology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Nodes</subject><subject>Principles</subject><subject>resting state functional connectivity</subject><subject>Structure-function relationships</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9PGzEQxS1URELoV0Ar9dBeNvjf7qwvlVBUAiKCQ0urcrG8jq1u2OwGeyOSb88sgRw4VPhi6_nn55k3hCSMjhmus8WYgVRpngs-5hRVmikJ480BGe4vPpEhpQBpobgYkOMYF5QyXkg4IgPOZJFzpYZETdrGulUXE9PMk1WoGlutaheTqkm6fw5VU29jFZPWJ2UwqDaue2rDQzwhh97U0X1-3Ufk7uLHr8llOrudXk3OZ6mVeQEpAzXnsiizkivPgeYA1kEhjKF-zjNnwSohPMgSi1al49Kj5sEY6xWzhRiRrzvfVWgf1y52ellF6-raNK5dR42NUHRlGZLf_ksyisWApEIi-uUdumjXAXtFCrDEjNGsp4odZUMbY3BeY0BLE7ZopftB6IXu89Z93rofhH4ZhN7g09PXD9bl0s33D9-SR-D7Dniqarf9sLG--Xv-sz-iQbozqGLnNnsDEx50DgIy_edmqpW6h_z3daavxTMbt6Rl</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Wig, Gagan S.</creator><creator>Schlaggar, Bradley L.</creator><creator>Petersen, Steven E.</creator><general>Blackwell Publishing Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201104</creationdate><title>Concepts and principles in the analysis of brain networks</title><author>Wig, Gagan S. ; Schlaggar, Bradley L. ; Petersen, Steven E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4687-179d248b5b29f270677ce783aa0fd25ec7c933f74b6639be24fec7f7aacf91c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain Mapping - methods</topic><topic>brain networks</topic><topic>Circuits</topic><topic>Concept Formation - physiology</topic><topic>Functional anatomy</topic><topic>Graph theory</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Information processing</topic><topic>Models, Neurological</topic><topic>Models, Theoretical</topic><topic>Nerve Net - anatomy &amp; histology</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Neural Pathways - physiology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Nodes</topic><topic>Principles</topic><topic>resting state functional connectivity</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wig, Gagan S.</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wig, Gagan S.</au><au>Schlaggar, Bradley L.</au><au>Petersen, Steven E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concepts and principles in the analysis of brain networks</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2011-04</date><risdate>2011</risdate><volume>1224</volume><issue>1</issue><spage>126</spage><epage>146</epage><pages>126-146</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><coden>ANYAA9</coden><abstract>The brain is a large‐scale network, operating at multiple levels of information processing ranging from neurons, to local circuits, to systems of brain areas. Recent advances in the mathematics of graph theory have provided tools with which to study networks. These tools can be employed to understand how the brain's behavioral repertoire is mediated by the interactions of objects of information processing. Within the graph‐theoretic framework, networks are defined by independent objects (nodes) and the relationships shared between them (edges). Importantly, the accurate incorporation of graph theory into the study of brain networks mandates careful consideration of the assumptions, constraints, and principles of both the mathematics and the underlying neurobiology. This review focuses on understanding these principles and how they guide what constitutes a brain network and its elements, specifically focusing on resting‐state correlations in humans. We argue that approaches that fail to take the principles of graph theory into consideration and do not reflect the underlying neurobiological properties of the brain will likely mischaracterize brain network structure and function.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>21486299</pmid><doi>10.1111/j.1749-6632.2010.05947.x</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2011-04, Vol.1224 (1), p.126-146
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_miscellaneous_862006715
source MEDLINE; Wiley Journals
subjects Animals
Brain
Brain - anatomy & histology
Brain Mapping - methods
brain networks
Circuits
Concept Formation - physiology
Functional anatomy
Graph theory
Humans
Image Interpretation, Computer-Assisted
Information processing
Models, Neurological
Models, Theoretical
Nerve Net - anatomy & histology
Nerve Net - physiology
Nervous system
Neural Pathways - physiology
Neurons
Neurosciences
Nodes
Principles
resting state functional connectivity
Structure-function relationships
title Concepts and principles in the analysis of brain networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concepts%20and%20principles%20in%20the%20analysis%20of%20brain%20networks&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Wig,%20Gagan%20S.&rft.date=2011-04&rft.volume=1224&rft.issue=1&rft.spage=126&rft.epage=146&rft.pages=126-146&rft.issn=0077-8923&rft.eissn=1749-6632&rft.coden=ANYAA9&rft_id=info:doi/10.1111/j.1749-6632.2010.05947.x&rft_dat=%3Cproquest_cross%3E862006715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767751054&rft_id=info:pmid/21486299&rfr_iscdi=true