One-step in situ synthesis of NHₓ-adsorbed rhodium nanocrystals at liquid–liquid interfaces for possible electrocatalytic applications

Nearly monodisperse rhodium nanoparticles with adsorbed NHₓ were synthesized at the CCl₄–water interface. The presence of NHₓ-adsorbed species was confirmed by energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) studies. The synthesis of controlled size 2–38nm rhodium p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2011-06, Vol.358 (1), p.238-244
Hauptverfasser: Patil, V.S, Krishna, S.R, Hawaldar, R.R, Gaikwad, A.B, Sathaye, S.D, Patil, K.R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue 1
container_start_page 238
container_title Journal of colloid and interface science
container_volume 358
creator Patil, V.S
Krishna, S.R
Hawaldar, R.R
Gaikwad, A.B
Sathaye, S.D
Patil, K.R
description Nearly monodisperse rhodium nanoparticles with adsorbed NHₓ were synthesized at the CCl₄–water interface. The presence of NHₓ-adsorbed species was confirmed by energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) studies. The synthesis of controlled size 2–38nm rhodium particles was studied as a function of reducing agent concentration by transmission electron microscopy (TEM). HRTEM confirmed the formation of rhodium nanoparticles having fringe spacing consistent with reported Rh (111) planes. The continuity of these films over an area of 1×1μm was revealed by atomic force microscopy (AFM) studies. The electrocatalytic application of these nanostructure Rh-NHₓ thin films for formaldehyde oxidation in 0.5M NaOH was investigated by cyclic voltammetry. The Rh nanoparticles formed by the present strategy are expected to be useful for other catalytic applications also.
doi_str_mv 10.1016/j.jcis.2011.02.065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861588137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>861588137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-daea76b7e1b992f93fd501ee11986fff6416cbaef56cb14bf493d0599074096d3</originalsourceid><addsrcrecordid>eNo9kcFu1DAURS0EokPhB1iAN4hVwnMSO_ESVUCRKrqAri3HfqYeZeLUdhazq1iy7R_2S_Bohq6eLZ17rOdLyFsGNQMmPm3rrfGpboCxGpoaBH9GNgwkr3oG7XOyAWhYJXvZn5FXKW2hgJzLl-SsYR1vZSM25O_1jFXKuFA_0-TzStN-zreYfKLB0R-Xj38eKm1TiCNaGm-D9euOznoOJu5T1lOiOtPJ363ePt4_HA_FlTE6bTBRFyJdQkp-nJDihCbHYHQJ7rM3VC_L5MvVhzm9Ji9c8eGb0zwnN1-__Lq4rK6uv32_-HxVmZaLXFmNuhdjj2yUsnGydZYDQ2RMDsI5JzomzKjR8TJYN7pOtha4lNB3IIVtz8nHo3eJ4W7FlNXOJ4PTpGcMa1KDYHwYWNsXsjmSJpYNIjq1RL_Tca8YqEMFaqsOFahDBQoaVSoooXcn_Tru0D5F_v95AT6cAJ2MnlzU88HxxHUMeNmlcO-PnNNB6d-xMDc_y0sCAMTQ9bz9ByQvny4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861588137</pqid></control><display><type>article</type><title>One-step in situ synthesis of NHₓ-adsorbed rhodium nanocrystals at liquid–liquid interfaces for possible electrocatalytic applications</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Patil, V.S ; Krishna, S.R ; Hawaldar, R.R ; Gaikwad, A.B ; Sathaye, S.D ; Patil, K.R</creator><creatorcontrib>Patil, V.S ; Krishna, S.R ; Hawaldar, R.R ; Gaikwad, A.B ; Sathaye, S.D ; Patil, K.R</creatorcontrib><description>Nearly monodisperse rhodium nanoparticles with adsorbed NHₓ were synthesized at the CCl₄–water interface. The presence of NHₓ-adsorbed species was confirmed by energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) studies. The synthesis of controlled size 2–38nm rhodium particles was studied as a function of reducing agent concentration by transmission electron microscopy (TEM). HRTEM confirmed the formation of rhodium nanoparticles having fringe spacing consistent with reported Rh (111) planes. The continuity of these films over an area of 1×1μm was revealed by atomic force microscopy (AFM) studies. The electrocatalytic application of these nanostructure Rh-NHₓ thin films for formaldehyde oxidation in 0.5M NaOH was investigated by cyclic voltammetry. The Rh nanoparticles formed by the present strategy are expected to be useful for other catalytic applications also.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2011.02.065</identifier><identifier>PMID: 21453926</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adsorption ; atomic force microscopy ; Catalysis ; Chemistry ; Colloidal state and disperse state ; Electrochemistry ; energy-dispersive X-ray analysis ; Exact sciences and technology ; formaldehyde ; General and physical chemistry ; Kinetics and mechanism of reactions ; nanocrystals ; nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Nanotechnology - economics ; Nanotechnology - methods ; oxidation ; Oxidation-Reduction ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; reducing agents ; rhodium ; Rhodium - chemistry ; sodium hydroxide ; Surface Properties ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; transmission electron microscopy ; Water - chemistry ; X-ray photoelectron spectroscopy</subject><ispartof>Journal of colloid and interface science, 2011-06, Vol.358 (1), p.238-244</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-daea76b7e1b992f93fd501ee11986fff6416cbaef56cb14bf493d0599074096d3</citedby><cites>FETCH-LOGICAL-c356t-daea76b7e1b992f93fd501ee11986fff6416cbaef56cb14bf493d0599074096d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24105198$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21453926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patil, V.S</creatorcontrib><creatorcontrib>Krishna, S.R</creatorcontrib><creatorcontrib>Hawaldar, R.R</creatorcontrib><creatorcontrib>Gaikwad, A.B</creatorcontrib><creatorcontrib>Sathaye, S.D</creatorcontrib><creatorcontrib>Patil, K.R</creatorcontrib><title>One-step in situ synthesis of NHₓ-adsorbed rhodium nanocrystals at liquid–liquid interfaces for possible electrocatalytic applications</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Nearly monodisperse rhodium nanoparticles with adsorbed NHₓ were synthesized at the CCl₄–water interface. The presence of NHₓ-adsorbed species was confirmed by energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) studies. The synthesis of controlled size 2–38nm rhodium particles was studied as a function of reducing agent concentration by transmission electron microscopy (TEM). HRTEM confirmed the formation of rhodium nanoparticles having fringe spacing consistent with reported Rh (111) planes. The continuity of these films over an area of 1×1μm was revealed by atomic force microscopy (AFM) studies. The electrocatalytic application of these nanostructure Rh-NHₓ thin films for formaldehyde oxidation in 0.5M NaOH was investigated by cyclic voltammetry. The Rh nanoparticles formed by the present strategy are expected to be useful for other catalytic applications also.</description><subject>Adsorption</subject><subject>atomic force microscopy</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Electrochemistry</subject><subject>energy-dispersive X-ray analysis</subject><subject>Exact sciences and technology</subject><subject>formaldehyde</subject><subject>General and physical chemistry</subject><subject>Kinetics and mechanism of reactions</subject><subject>nanocrystals</subject><subject>nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanotechnology - economics</subject><subject>Nanotechnology - methods</subject><subject>oxidation</subject><subject>Oxidation-Reduction</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>reducing agents</subject><subject>rhodium</subject><subject>Rhodium - chemistry</subject><subject>sodium hydroxide</subject><subject>Surface Properties</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>transmission electron microscopy</subject><subject>Water - chemistry</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kcFu1DAURS0EokPhB1iAN4hVwnMSO_ESVUCRKrqAri3HfqYeZeLUdhazq1iy7R_2S_Bohq6eLZ17rOdLyFsGNQMmPm3rrfGpboCxGpoaBH9GNgwkr3oG7XOyAWhYJXvZn5FXKW2hgJzLl-SsYR1vZSM25O_1jFXKuFA_0-TzStN-zreYfKLB0R-Xj38eKm1TiCNaGm-D9euOznoOJu5T1lOiOtPJ363ePt4_HA_FlTE6bTBRFyJdQkp-nJDihCbHYHQJ7rM3VC_L5MvVhzm9Ji9c8eGb0zwnN1-__Lq4rK6uv32_-HxVmZaLXFmNuhdjj2yUsnGydZYDQ2RMDsI5JzomzKjR8TJYN7pOtha4lNB3IIVtz8nHo3eJ4W7FlNXOJ4PTpGcMa1KDYHwYWNsXsjmSJpYNIjq1RL_Tca8YqEMFaqsOFahDBQoaVSoooXcn_Tru0D5F_v95AT6cAJ2MnlzU88HxxHUMeNmlcO-PnNNB6d-xMDc_y0sCAMTQ9bz9ByQvny4</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Patil, V.S</creator><creator>Krishna, S.R</creator><creator>Hawaldar, R.R</creator><creator>Gaikwad, A.B</creator><creator>Sathaye, S.D</creator><creator>Patil, K.R</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110601</creationdate><title>One-step in situ synthesis of NHₓ-adsorbed rhodium nanocrystals at liquid–liquid interfaces for possible electrocatalytic applications</title><author>Patil, V.S ; Krishna, S.R ; Hawaldar, R.R ; Gaikwad, A.B ; Sathaye, S.D ; Patil, K.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-daea76b7e1b992f93fd501ee11986fff6416cbaef56cb14bf493d0599074096d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>atomic force microscopy</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Electrochemistry</topic><topic>energy-dispersive X-ray analysis</topic><topic>Exact sciences and technology</topic><topic>formaldehyde</topic><topic>General and physical chemistry</topic><topic>Kinetics and mechanism of reactions</topic><topic>nanocrystals</topic><topic>nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanotechnology - economics</topic><topic>Nanotechnology - methods</topic><topic>oxidation</topic><topic>Oxidation-Reduction</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>reducing agents</topic><topic>rhodium</topic><topic>Rhodium - chemistry</topic><topic>sodium hydroxide</topic><topic>Surface Properties</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>transmission electron microscopy</topic><topic>Water - chemistry</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patil, V.S</creatorcontrib><creatorcontrib>Krishna, S.R</creatorcontrib><creatorcontrib>Hawaldar, R.R</creatorcontrib><creatorcontrib>Gaikwad, A.B</creatorcontrib><creatorcontrib>Sathaye, S.D</creatorcontrib><creatorcontrib>Patil, K.R</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patil, V.S</au><au>Krishna, S.R</au><au>Hawaldar, R.R</au><au>Gaikwad, A.B</au><au>Sathaye, S.D</au><au>Patil, K.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-step in situ synthesis of NHₓ-adsorbed rhodium nanocrystals at liquid–liquid interfaces for possible electrocatalytic applications</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>358</volume><issue>1</issue><spage>238</spage><epage>244</epage><pages>238-244</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>Nearly monodisperse rhodium nanoparticles with adsorbed NHₓ were synthesized at the CCl₄–water interface. The presence of NHₓ-adsorbed species was confirmed by energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) studies. The synthesis of controlled size 2–38nm rhodium particles was studied as a function of reducing agent concentration by transmission electron microscopy (TEM). HRTEM confirmed the formation of rhodium nanoparticles having fringe spacing consistent with reported Rh (111) planes. The continuity of these films over an area of 1×1μm was revealed by atomic force microscopy (AFM) studies. The electrocatalytic application of these nanostructure Rh-NHₓ thin films for formaldehyde oxidation in 0.5M NaOH was investigated by cyclic voltammetry. The Rh nanoparticles formed by the present strategy are expected to be useful for other catalytic applications also.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>21453926</pmid><doi>10.1016/j.jcis.2011.02.065</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2011-06, Vol.358 (1), p.238-244
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_861588137
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adsorption
atomic force microscopy
Catalysis
Chemistry
Colloidal state and disperse state
Electrochemistry
energy-dispersive X-ray analysis
Exact sciences and technology
formaldehyde
General and physical chemistry
Kinetics and mechanism of reactions
nanocrystals
nanoparticles
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Nanotechnology - economics
Nanotechnology - methods
oxidation
Oxidation-Reduction
Physical and chemical studies. Granulometry. Electrokinetic phenomena
reducing agents
rhodium
Rhodium - chemistry
sodium hydroxide
Surface Properties
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
transmission electron microscopy
Water - chemistry
X-ray photoelectron spectroscopy
title One-step in situ synthesis of NHₓ-adsorbed rhodium nanocrystals at liquid–liquid interfaces for possible electrocatalytic applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-step%20in%20situ%20synthesis%20of%20NH%E2%82%93-adsorbed%20rhodium%20nanocrystals%20at%20liquid%E2%80%93liquid%20interfaces%20for%20possible%20electrocatalytic%20applications&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Patil,%20V.S&rft.date=2011-06-01&rft.volume=358&rft.issue=1&rft.spage=238&rft.epage=244&rft.pages=238-244&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2011.02.065&rft_dat=%3Cproquest_cross%3E861588137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861588137&rft_id=info:pmid/21453926&rfr_iscdi=true