One-step in situ synthesis of NHₓ-adsorbed rhodium nanocrystals at liquid–liquid interfaces for possible electrocatalytic applications
Nearly monodisperse rhodium nanoparticles with adsorbed NHₓ were synthesized at the CCl₄–water interface. The presence of NHₓ-adsorbed species was confirmed by energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) studies. The synthesis of controlled size 2–38nm rhodium p...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2011-06, Vol.358 (1), p.238-244 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 244 |
---|---|
container_issue | 1 |
container_start_page | 238 |
container_title | Journal of colloid and interface science |
container_volume | 358 |
creator | Patil, V.S Krishna, S.R Hawaldar, R.R Gaikwad, A.B Sathaye, S.D Patil, K.R |
description | Nearly monodisperse rhodium nanoparticles with adsorbed NHₓ were synthesized at the CCl₄–water interface. The presence of NHₓ-adsorbed species was confirmed by energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) studies. The synthesis of controlled size 2–38nm rhodium particles was studied as a function of reducing agent concentration by transmission electron microscopy (TEM). HRTEM confirmed the formation of rhodium nanoparticles having fringe spacing consistent with reported Rh (111) planes. The continuity of these films over an area of 1×1μm was revealed by atomic force microscopy (AFM) studies. The electrocatalytic application of these nanostructure Rh-NHₓ thin films for formaldehyde oxidation in 0.5M NaOH was investigated by cyclic voltammetry. The Rh nanoparticles formed by the present strategy are expected to be useful for other catalytic applications also. |
doi_str_mv | 10.1016/j.jcis.2011.02.065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861588137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>861588137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-daea76b7e1b992f93fd501ee11986fff6416cbaef56cb14bf493d0599074096d3</originalsourceid><addsrcrecordid>eNo9kcFu1DAURS0EokPhB1iAN4hVwnMSO_ESVUCRKrqAri3HfqYeZeLUdhazq1iy7R_2S_Bohq6eLZ17rOdLyFsGNQMmPm3rrfGpboCxGpoaBH9GNgwkr3oG7XOyAWhYJXvZn5FXKW2hgJzLl-SsYR1vZSM25O_1jFXKuFA_0-TzStN-zreYfKLB0R-Xj38eKm1TiCNaGm-D9euOznoOJu5T1lOiOtPJ363ePt4_HA_FlTE6bTBRFyJdQkp-nJDihCbHYHQJ7rM3VC_L5MvVhzm9Ji9c8eGb0zwnN1-__Lq4rK6uv32_-HxVmZaLXFmNuhdjj2yUsnGydZYDQ2RMDsI5JzomzKjR8TJYN7pOtha4lNB3IIVtz8nHo3eJ4W7FlNXOJ4PTpGcMa1KDYHwYWNsXsjmSJpYNIjq1RL_Tca8YqEMFaqsOFahDBQoaVSoooXcn_Tru0D5F_v95AT6cAJ2MnlzU88HxxHUMeNmlcO-PnNNB6d-xMDc_y0sCAMTQ9bz9ByQvny4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861588137</pqid></control><display><type>article</type><title>One-step in situ synthesis of NHₓ-adsorbed rhodium nanocrystals at liquid–liquid interfaces for possible electrocatalytic applications</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Patil, V.S ; Krishna, S.R ; Hawaldar, R.R ; Gaikwad, A.B ; Sathaye, S.D ; Patil, K.R</creator><creatorcontrib>Patil, V.S ; Krishna, S.R ; Hawaldar, R.R ; Gaikwad, A.B ; Sathaye, S.D ; Patil, K.R</creatorcontrib><description>Nearly monodisperse rhodium nanoparticles with adsorbed NHₓ were synthesized at the CCl₄–water interface. The presence of NHₓ-adsorbed species was confirmed by energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) studies. The synthesis of controlled size 2–38nm rhodium particles was studied as a function of reducing agent concentration by transmission electron microscopy (TEM). HRTEM confirmed the formation of rhodium nanoparticles having fringe spacing consistent with reported Rh (111) planes. The continuity of these films over an area of 1×1μm was revealed by atomic force microscopy (AFM) studies. The electrocatalytic application of these nanostructure Rh-NHₓ thin films for formaldehyde oxidation in 0.5M NaOH was investigated by cyclic voltammetry. The Rh nanoparticles formed by the present strategy are expected to be useful for other catalytic applications also.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2011.02.065</identifier><identifier>PMID: 21453926</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adsorption ; atomic force microscopy ; Catalysis ; Chemistry ; Colloidal state and disperse state ; Electrochemistry ; energy-dispersive X-ray analysis ; Exact sciences and technology ; formaldehyde ; General and physical chemistry ; Kinetics and mechanism of reactions ; nanocrystals ; nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Nanotechnology - economics ; Nanotechnology - methods ; oxidation ; Oxidation-Reduction ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; reducing agents ; rhodium ; Rhodium - chemistry ; sodium hydroxide ; Surface Properties ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; transmission electron microscopy ; Water - chemistry ; X-ray photoelectron spectroscopy</subject><ispartof>Journal of colloid and interface science, 2011-06, Vol.358 (1), p.238-244</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-daea76b7e1b992f93fd501ee11986fff6416cbaef56cb14bf493d0599074096d3</citedby><cites>FETCH-LOGICAL-c356t-daea76b7e1b992f93fd501ee11986fff6416cbaef56cb14bf493d0599074096d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24105198$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21453926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patil, V.S</creatorcontrib><creatorcontrib>Krishna, S.R</creatorcontrib><creatorcontrib>Hawaldar, R.R</creatorcontrib><creatorcontrib>Gaikwad, A.B</creatorcontrib><creatorcontrib>Sathaye, S.D</creatorcontrib><creatorcontrib>Patil, K.R</creatorcontrib><title>One-step in situ synthesis of NHₓ-adsorbed rhodium nanocrystals at liquid–liquid interfaces for possible electrocatalytic applications</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Nearly monodisperse rhodium nanoparticles with adsorbed NHₓ were synthesized at the CCl₄–water interface. The presence of NHₓ-adsorbed species was confirmed by energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) studies. The synthesis of controlled size 2–38nm rhodium particles was studied as a function of reducing agent concentration by transmission electron microscopy (TEM). HRTEM confirmed the formation of rhodium nanoparticles having fringe spacing consistent with reported Rh (111) planes. The continuity of these films over an area of 1×1μm was revealed by atomic force microscopy (AFM) studies. The electrocatalytic application of these nanostructure Rh-NHₓ thin films for formaldehyde oxidation in 0.5M NaOH was investigated by cyclic voltammetry. The Rh nanoparticles formed by the present strategy are expected to be useful for other catalytic applications also.</description><subject>Adsorption</subject><subject>atomic force microscopy</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Electrochemistry</subject><subject>energy-dispersive X-ray analysis</subject><subject>Exact sciences and technology</subject><subject>formaldehyde</subject><subject>General and physical chemistry</subject><subject>Kinetics and mechanism of reactions</subject><subject>nanocrystals</subject><subject>nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanotechnology - economics</subject><subject>Nanotechnology - methods</subject><subject>oxidation</subject><subject>Oxidation-Reduction</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>reducing agents</subject><subject>rhodium</subject><subject>Rhodium - chemistry</subject><subject>sodium hydroxide</subject><subject>Surface Properties</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>transmission electron microscopy</subject><subject>Water - chemistry</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kcFu1DAURS0EokPhB1iAN4hVwnMSO_ESVUCRKrqAri3HfqYeZeLUdhazq1iy7R_2S_Bohq6eLZ17rOdLyFsGNQMmPm3rrfGpboCxGpoaBH9GNgwkr3oG7XOyAWhYJXvZn5FXKW2hgJzLl-SsYR1vZSM25O_1jFXKuFA_0-TzStN-zreYfKLB0R-Xj38eKm1TiCNaGm-D9euOznoOJu5T1lOiOtPJ363ePt4_HA_FlTE6bTBRFyJdQkp-nJDihCbHYHQJ7rM3VC_L5MvVhzm9Ji9c8eGb0zwnN1-__Lq4rK6uv32_-HxVmZaLXFmNuhdjj2yUsnGydZYDQ2RMDsI5JzomzKjR8TJYN7pOtha4lNB3IIVtz8nHo3eJ4W7FlNXOJ4PTpGcMa1KDYHwYWNsXsjmSJpYNIjq1RL_Tca8YqEMFaqsOFahDBQoaVSoooXcn_Tru0D5F_v95AT6cAJ2MnlzU88HxxHUMeNmlcO-PnNNB6d-xMDc_y0sCAMTQ9bz9ByQvny4</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Patil, V.S</creator><creator>Krishna, S.R</creator><creator>Hawaldar, R.R</creator><creator>Gaikwad, A.B</creator><creator>Sathaye, S.D</creator><creator>Patil, K.R</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110601</creationdate><title>One-step in situ synthesis of NHₓ-adsorbed rhodium nanocrystals at liquid–liquid interfaces for possible electrocatalytic applications</title><author>Patil, V.S ; Krishna, S.R ; Hawaldar, R.R ; Gaikwad, A.B ; Sathaye, S.D ; Patil, K.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-daea76b7e1b992f93fd501ee11986fff6416cbaef56cb14bf493d0599074096d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>atomic force microscopy</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Electrochemistry</topic><topic>energy-dispersive X-ray analysis</topic><topic>Exact sciences and technology</topic><topic>formaldehyde</topic><topic>General and physical chemistry</topic><topic>Kinetics and mechanism of reactions</topic><topic>nanocrystals</topic><topic>nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanotechnology - economics</topic><topic>Nanotechnology - methods</topic><topic>oxidation</topic><topic>Oxidation-Reduction</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>reducing agents</topic><topic>rhodium</topic><topic>Rhodium - chemistry</topic><topic>sodium hydroxide</topic><topic>Surface Properties</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>transmission electron microscopy</topic><topic>Water - chemistry</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patil, V.S</creatorcontrib><creatorcontrib>Krishna, S.R</creatorcontrib><creatorcontrib>Hawaldar, R.R</creatorcontrib><creatorcontrib>Gaikwad, A.B</creatorcontrib><creatorcontrib>Sathaye, S.D</creatorcontrib><creatorcontrib>Patil, K.R</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patil, V.S</au><au>Krishna, S.R</au><au>Hawaldar, R.R</au><au>Gaikwad, A.B</au><au>Sathaye, S.D</au><au>Patil, K.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-step in situ synthesis of NHₓ-adsorbed rhodium nanocrystals at liquid–liquid interfaces for possible electrocatalytic applications</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>358</volume><issue>1</issue><spage>238</spage><epage>244</epage><pages>238-244</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>Nearly monodisperse rhodium nanoparticles with adsorbed NHₓ were synthesized at the CCl₄–water interface. The presence of NHₓ-adsorbed species was confirmed by energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) studies. The synthesis of controlled size 2–38nm rhodium particles was studied as a function of reducing agent concentration by transmission electron microscopy (TEM). HRTEM confirmed the formation of rhodium nanoparticles having fringe spacing consistent with reported Rh (111) planes. The continuity of these films over an area of 1×1μm was revealed by atomic force microscopy (AFM) studies. The electrocatalytic application of these nanostructure Rh-NHₓ thin films for formaldehyde oxidation in 0.5M NaOH was investigated by cyclic voltammetry. The Rh nanoparticles formed by the present strategy are expected to be useful for other catalytic applications also.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>21453926</pmid><doi>10.1016/j.jcis.2011.02.065</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2011-06, Vol.358 (1), p.238-244 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_861588137 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Adsorption atomic force microscopy Catalysis Chemistry Colloidal state and disperse state Electrochemistry energy-dispersive X-ray analysis Exact sciences and technology formaldehyde General and physical chemistry Kinetics and mechanism of reactions nanocrystals nanoparticles Nanoparticles - chemistry Nanoparticles - ultrastructure Nanotechnology - economics Nanotechnology - methods oxidation Oxidation-Reduction Physical and chemical studies. Granulometry. Electrokinetic phenomena reducing agents rhodium Rhodium - chemistry sodium hydroxide Surface Properties Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry transmission electron microscopy Water - chemistry X-ray photoelectron spectroscopy |
title | One-step in situ synthesis of NHₓ-adsorbed rhodium nanocrystals at liquid–liquid interfaces for possible electrocatalytic applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-step%20in%20situ%20synthesis%20of%20NH%E2%82%93-adsorbed%20rhodium%20nanocrystals%20at%20liquid%E2%80%93liquid%20interfaces%20for%20possible%20electrocatalytic%20applications&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Patil,%20V.S&rft.date=2011-06-01&rft.volume=358&rft.issue=1&rft.spage=238&rft.epage=244&rft.pages=238-244&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2011.02.065&rft_dat=%3Cproquest_cross%3E861588137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861588137&rft_id=info:pmid/21453926&rfr_iscdi=true |