Effect of head group size, temperature and counterion specificity on cationic micelles

Specific conductivity vs mole fraction of CTACl at different temperature. [Display omitted] ► In this study, we have reported experimental results concerning the temperature variations of the cmc of four cationic micelles differing in head group size and counterion type. ► The conductance plots for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2011-06, Vol.358 (1), p.160-166
Hauptverfasser: Di Michele, Alessandro, Brinchi, Lucia, Di Profio, Pietro, Germani, Raimondo, Savelli, Gianfranco, Onori, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 1
container_start_page 160
container_title Journal of colloid and interface science
container_volume 358
creator Di Michele, Alessandro
Brinchi, Lucia
Di Profio, Pietro
Germani, Raimondo
Savelli, Gianfranco
Onori, Giuseppe
description Specific conductivity vs mole fraction of CTACl at different temperature. [Display omitted] ► In this study, we have reported experimental results concerning the temperature variations of the cmc of four cationic micelles differing in head group size and counterion type. ► The conductance plots for cmc determinations were used to estimate the extent of counterion binding to the micelle. ► The micelle ionization degree increases with the size of the ionic head group and with the size of the counterion. ► Thermodynamic analysis of micelle formation has often been made only from cmc change with temperature and using a polynomial-function description of this dependence. The critical micelle concentration (cmc) and ionisation degree ( α), of micelles of cetyltrimethylammonium bromide (CTABr), cetyltrimethylammonium chloride (CTACl), cetyltripropylammonium bromide (CTPABr) and cetyltripropylammonium chloride (CTPACl) have been measured over a narrow temperature range at 2 degree intervals using electrical conductivity. CTPACl and CTPABr are very soluble in water and were measured in the temperature range 275.15–323.15 K. The Krafft temperatures for CTABr and for CTACl are 293.15 K and 284.15 K, respectively and established a lower temperature limit for our studies on these two surfactants. The cmc vs temperature curves have a smooth minimum near room temperature and α linearly increases with temperature. The changes of cmc and α with temperature are smaller than those associated with the modification of head group size or counterion nature. Using these results, basic thermodynamic quantities associated with the phenomena of micellization have been evaluated. Thermodynamic properties of the surfactant solutions were discussed in terms of temperature dependence of the free energy, enthalpy and entropy of micellization. A close similarity between the effects of change in temperature on protein folding and micellization process appears from the data.
doi_str_mv 10.1016/j.jcis.2010.12.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861586892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979710014086</els_id><sourcerecordid>1671367831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-8f73791f5bec405582fe3e9136dd8b83f480223f75684120d09dfbf83798dc4a3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhD3AAXxAcyDLjxIkt9YKq8iFV4gDlanntcfFq84GdIJVfj6NdeuzJ8uiZd0bPMPYSYYuA7Yf9du9i3gpYC2ILQj1iGwQtqw6hfsw2AAIr3enujD3LeQ-AKKV-ys4ENg0o3W7Yz6sQyM18DPwXWc9v07hMPMe_9J7P1E-U7Lwk4nbw3I3LMFOK48DzRC6G6OJ8x8vX2blUo-N9dHQ4UH7OngR7yPTi9J6zm09XPy6_VNffPn-9_HhdOQlqrlTo6k5jkDtyDUipRKCaNNat92qn6tAoEKIOnWxVgwI8aB92QZUm5V1j63P29pg7pfH3Qnk2fczrCnagcclGtShVq7Qo5LsHSWy7MrZTNRZUHFGXxpwTBTOl2Nt0ZxDMat7szWrerOYNClPMl6ZXp_xl15O_b_mvugBvToDNzh5CssOacc81CBLVGvT6yAU7GnubCnPzvUxqAaBYaJtCXBwJKmb_REomu0iDIx9TuaXxY3xo038Xq6n0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671367831</pqid></control><display><type>article</type><title>Effect of head group size, temperature and counterion specificity on cationic micelles</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Di Michele, Alessandro ; Brinchi, Lucia ; Di Profio, Pietro ; Germani, Raimondo ; Savelli, Gianfranco ; Onori, Giuseppe</creator><creatorcontrib>Di Michele, Alessandro ; Brinchi, Lucia ; Di Profio, Pietro ; Germani, Raimondo ; Savelli, Gianfranco ; Onori, Giuseppe</creatorcontrib><description>Specific conductivity vs mole fraction of CTACl at different temperature. [Display omitted] ► In this study, we have reported experimental results concerning the temperature variations of the cmc of four cationic micelles differing in head group size and counterion type. ► The conductance plots for cmc determinations were used to estimate the extent of counterion binding to the micelle. ► The micelle ionization degree increases with the size of the ionic head group and with the size of the counterion. ► Thermodynamic analysis of micelle formation has often been made only from cmc change with temperature and using a polynomial-function description of this dependence. The critical micelle concentration (cmc) and ionisation degree ( α), of micelles of cetyltrimethylammonium bromide (CTABr), cetyltrimethylammonium chloride (CTACl), cetyltripropylammonium bromide (CTPABr) and cetyltripropylammonium chloride (CTPACl) have been measured over a narrow temperature range at 2 degree intervals using electrical conductivity. CTPACl and CTPABr are very soluble in water and were measured in the temperature range 275.15–323.15 K. The Krafft temperatures for CTABr and for CTACl are 293.15 K and 284.15 K, respectively and established a lower temperature limit for our studies on these two surfactants. The cmc vs temperature curves have a smooth minimum near room temperature and α linearly increases with temperature. The changes of cmc and α with temperature are smaller than those associated with the modification of head group size or counterion nature. Using these results, basic thermodynamic quantities associated with the phenomena of micellization have been evaluated. Thermodynamic properties of the surfactant solutions were discussed in terms of temperature dependence of the free energy, enthalpy and entropy of micellization. A close similarity between the effects of change in temperature on protein folding and micellization process appears from the data.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2010.12.028</identifier><identifier>PMID: 21440896</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>ambient temperature ; Cationic ; cetyltrimethylammonium bromide ; Chemistry ; Chlorides ; Colloidal state and disperse state ; Critical micelle concentration ; electrical conductivity ; energy ; Enthalpy ; Entropy ; Exact sciences and technology ; General and physical chemistry ; group size ; Ionisation degree ; ionization ; Micelles ; Micelles. Thin films ; Micellization ; protein folding ; Resistivity ; Similarity ; Surfactants ; Temperature dependence</subject><ispartof>Journal of colloid and interface science, 2011-06, Vol.358 (1), p.160-166</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-8f73791f5bec405582fe3e9136dd8b83f480223f75684120d09dfbf83798dc4a3</citedby><cites>FETCH-LOGICAL-c508t-8f73791f5bec405582fe3e9136dd8b83f480223f75684120d09dfbf83798dc4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979710014086$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24105188$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21440896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Michele, Alessandro</creatorcontrib><creatorcontrib>Brinchi, Lucia</creatorcontrib><creatorcontrib>Di Profio, Pietro</creatorcontrib><creatorcontrib>Germani, Raimondo</creatorcontrib><creatorcontrib>Savelli, Gianfranco</creatorcontrib><creatorcontrib>Onori, Giuseppe</creatorcontrib><title>Effect of head group size, temperature and counterion specificity on cationic micelles</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Specific conductivity vs mole fraction of CTACl at different temperature. [Display omitted] ► In this study, we have reported experimental results concerning the temperature variations of the cmc of four cationic micelles differing in head group size and counterion type. ► The conductance plots for cmc determinations were used to estimate the extent of counterion binding to the micelle. ► The micelle ionization degree increases with the size of the ionic head group and with the size of the counterion. ► Thermodynamic analysis of micelle formation has often been made only from cmc change with temperature and using a polynomial-function description of this dependence. The critical micelle concentration (cmc) and ionisation degree ( α), of micelles of cetyltrimethylammonium bromide (CTABr), cetyltrimethylammonium chloride (CTACl), cetyltripropylammonium bromide (CTPABr) and cetyltripropylammonium chloride (CTPACl) have been measured over a narrow temperature range at 2 degree intervals using electrical conductivity. CTPACl and CTPABr are very soluble in water and were measured in the temperature range 275.15–323.15 K. The Krafft temperatures for CTABr and for CTACl are 293.15 K and 284.15 K, respectively and established a lower temperature limit for our studies on these two surfactants. The cmc vs temperature curves have a smooth minimum near room temperature and α linearly increases with temperature. The changes of cmc and α with temperature are smaller than those associated with the modification of head group size or counterion nature. Using these results, basic thermodynamic quantities associated with the phenomena of micellization have been evaluated. Thermodynamic properties of the surfactant solutions were discussed in terms of temperature dependence of the free energy, enthalpy and entropy of micellization. A close similarity between the effects of change in temperature on protein folding and micellization process appears from the data.</description><subject>ambient temperature</subject><subject>Cationic</subject><subject>cetyltrimethylammonium bromide</subject><subject>Chemistry</subject><subject>Chlorides</subject><subject>Colloidal state and disperse state</subject><subject>Critical micelle concentration</subject><subject>electrical conductivity</subject><subject>energy</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>group size</subject><subject>Ionisation degree</subject><subject>ionization</subject><subject>Micelles</subject><subject>Micelles. Thin films</subject><subject>Micellization</subject><subject>protein folding</subject><subject>Resistivity</subject><subject>Similarity</subject><subject>Surfactants</subject><subject>Temperature dependence</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvhD3AAXxAcyDLjxIkt9YKq8iFV4gDlanntcfFq84GdIJVfj6NdeuzJ8uiZd0bPMPYSYYuA7Yf9du9i3gpYC2ILQj1iGwQtqw6hfsw2AAIr3enujD3LeQ-AKKV-ys4ENg0o3W7Yz6sQyM18DPwXWc9v07hMPMe_9J7P1E-U7Lwk4nbw3I3LMFOK48DzRC6G6OJ8x8vX2blUo-N9dHQ4UH7OngR7yPTi9J6zm09XPy6_VNffPn-9_HhdOQlqrlTo6k5jkDtyDUipRKCaNNat92qn6tAoEKIOnWxVgwI8aB92QZUm5V1j63P29pg7pfH3Qnk2fczrCnagcclGtShVq7Qo5LsHSWy7MrZTNRZUHFGXxpwTBTOl2Nt0ZxDMat7szWrerOYNClPMl6ZXp_xl15O_b_mvugBvToDNzh5CssOacc81CBLVGvT6yAU7GnubCnPzvUxqAaBYaJtCXBwJKmb_REomu0iDIx9TuaXxY3xo038Xq6n0</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Di Michele, Alessandro</creator><creator>Brinchi, Lucia</creator><creator>Di Profio, Pietro</creator><creator>Germani, Raimondo</creator><creator>Savelli, Gianfranco</creator><creator>Onori, Giuseppe</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110601</creationdate><title>Effect of head group size, temperature and counterion specificity on cationic micelles</title><author>Di Michele, Alessandro ; Brinchi, Lucia ; Di Profio, Pietro ; Germani, Raimondo ; Savelli, Gianfranco ; Onori, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-8f73791f5bec405582fe3e9136dd8b83f480223f75684120d09dfbf83798dc4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ambient temperature</topic><topic>Cationic</topic><topic>cetyltrimethylammonium bromide</topic><topic>Chemistry</topic><topic>Chlorides</topic><topic>Colloidal state and disperse state</topic><topic>Critical micelle concentration</topic><topic>electrical conductivity</topic><topic>energy</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>group size</topic><topic>Ionisation degree</topic><topic>ionization</topic><topic>Micelles</topic><topic>Micelles. Thin films</topic><topic>Micellization</topic><topic>protein folding</topic><topic>Resistivity</topic><topic>Similarity</topic><topic>Surfactants</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Michele, Alessandro</creatorcontrib><creatorcontrib>Brinchi, Lucia</creatorcontrib><creatorcontrib>Di Profio, Pietro</creatorcontrib><creatorcontrib>Germani, Raimondo</creatorcontrib><creatorcontrib>Savelli, Gianfranco</creatorcontrib><creatorcontrib>Onori, Giuseppe</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Michele, Alessandro</au><au>Brinchi, Lucia</au><au>Di Profio, Pietro</au><au>Germani, Raimondo</au><au>Savelli, Gianfranco</au><au>Onori, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of head group size, temperature and counterion specificity on cationic micelles</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>358</volume><issue>1</issue><spage>160</spage><epage>166</epage><pages>160-166</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>Specific conductivity vs mole fraction of CTACl at different temperature. [Display omitted] ► In this study, we have reported experimental results concerning the temperature variations of the cmc of four cationic micelles differing in head group size and counterion type. ► The conductance plots for cmc determinations were used to estimate the extent of counterion binding to the micelle. ► The micelle ionization degree increases with the size of the ionic head group and with the size of the counterion. ► Thermodynamic analysis of micelle formation has often been made only from cmc change with temperature and using a polynomial-function description of this dependence. The critical micelle concentration (cmc) and ionisation degree ( α), of micelles of cetyltrimethylammonium bromide (CTABr), cetyltrimethylammonium chloride (CTACl), cetyltripropylammonium bromide (CTPABr) and cetyltripropylammonium chloride (CTPACl) have been measured over a narrow temperature range at 2 degree intervals using electrical conductivity. CTPACl and CTPABr are very soluble in water and were measured in the temperature range 275.15–323.15 K. The Krafft temperatures for CTABr and for CTACl are 293.15 K and 284.15 K, respectively and established a lower temperature limit for our studies on these two surfactants. The cmc vs temperature curves have a smooth minimum near room temperature and α linearly increases with temperature. The changes of cmc and α with temperature are smaller than those associated with the modification of head group size or counterion nature. Using these results, basic thermodynamic quantities associated with the phenomena of micellization have been evaluated. Thermodynamic properties of the surfactant solutions were discussed in terms of temperature dependence of the free energy, enthalpy and entropy of micellization. A close similarity between the effects of change in temperature on protein folding and micellization process appears from the data.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>21440896</pmid><doi>10.1016/j.jcis.2010.12.028</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2011-06, Vol.358 (1), p.160-166
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_861586892
source ScienceDirect Journals (5 years ago - present)
subjects ambient temperature
Cationic
cetyltrimethylammonium bromide
Chemistry
Chlorides
Colloidal state and disperse state
Critical micelle concentration
electrical conductivity
energy
Enthalpy
Entropy
Exact sciences and technology
General and physical chemistry
group size
Ionisation degree
ionization
Micelles
Micelles. Thin films
Micellization
protein folding
Resistivity
Similarity
Surfactants
Temperature dependence
title Effect of head group size, temperature and counterion specificity on cationic micelles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20head%20group%20size,%20temperature%20and%20counterion%20specificity%20on%20cationic%20micelles&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Di%20Michele,%20Alessandro&rft.date=2011-06-01&rft.volume=358&rft.issue=1&rft.spage=160&rft.epage=166&rft.pages=160-166&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2010.12.028&rft_dat=%3Cproquest_cross%3E1671367831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671367831&rft_id=info:pmid/21440896&rft_els_id=S0021979710014086&rfr_iscdi=true