Hypothesis Generation, Sparse Categories, and the Positive Test Strategy
We consider the situation in which a learner must induce the rule that explains an observed set of data but the hypothesis space of possible rules is not explicitly enumerated or identified. The first part of the article demonstrates that as long as hypotheses are sparse (i.e., index less than half...
Gespeichert in:
Veröffentlicht in: | Psychological review 2011-01, Vol.118 (1), p.120-134 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134 |
---|---|
container_issue | 1 |
container_start_page | 120 |
container_title | Psychological review |
container_volume | 118 |
creator | Navarro, Daniel J Perfors, Amy F |
description | We consider the situation in which a learner must induce the rule that explains an observed set of data but the hypothesis space of possible rules is not explicitly enumerated or identified. The first part of the article demonstrates that as long as hypotheses are sparse (i.e., index less than half of the possible entities in the domain) then a positive test strategy is near optimal. The second part of this article then demonstrates that a preference for sparse hypotheses (a sparsity bias) emerges as a natural consequence of the family resemblance principle; that is, it arises from the requirement that good rules index entities that are more similar to one another than they are to entities that do not satisfy the rule. |
doi_str_mv | 10.1037/a0021110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861586222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ933604</ericid><sourcerecordid>2282723431</sourcerecordid><originalsourceid>FETCH-LOGICAL-a556t-1625a165675049cb1912e879754c82cba6fae95315d05e666da6f8b4a873a9073</originalsourceid><addsrcrecordid>eNqF0d9rFDEQB_Agir1WwT9AZBFEH241k2x-PcpRe0pBoRV8C3O5OU3Z212T3cL9981x1wo-6LwEZj4ME76MvQD-Hrg0H5BzAQD8EZuBk66GxsBjNuNcylo49eOEneZ8w0uBc0_ZiQCurDUwY8vlbujHX5Rjri6oo4Rj7Lt5dTVgylQtcKSffYqU5xV266rI6luf4xhvqbqmPFZXY9qb3TP2ZINtpufH94x9_3R-vVjWl18vPi8-XtaolB5r0EIhaKWN4o0LK3AgyBpnVBOsCCvUGySnJKg1V6S1XpeOXTVojUTHjTxjbw97h9T_nsoFfhtzoLbFjvope6tBWS2E-L9UICQ4rop8_Ze86afUlW8U1DgllHH_QkZLoVRjm4LeHVBIfc6JNn5IcYtp54H7fVT-PqpCXx33TastrR_gfTYFvDkCzAHbTcIuxPzHSaMMB13cy4OjFMPD-PyLk1Lz_UnzwxgH9EPeBUxjDC3lMKVE3egT3XoA68GD4PIOESav1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763255484</pqid></control><display><type>article</type><title>Hypothesis Generation, Sparse Categories, and the Positive Test Strategy</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><creator>Navarro, Daniel J ; Perfors, Amy F</creator><contributor>Anderson, John</contributor><creatorcontrib>Navarro, Daniel J ; Perfors, Amy F ; Anderson, John</creatorcontrib><description>We consider the situation in which a learner must induce the rule that explains an observed set of data but the hypothesis space of possible rules is not explicitly enumerated or identified. The first part of the article demonstrates that as long as hypotheses are sparse (i.e., index less than half of the possible entities in the domain) then a positive test strategy is near optimal. The second part of this article then demonstrates that a preference for sparse hypotheses (a sparsity bias) emerges as a natural consequence of the family resemblance principle; that is, it arises from the requirement that good rules index entities that are more similar to one another than they are to entities that do not satisfy the rule.</description><identifier>ISSN: 0033-295X</identifier><identifier>EISSN: 1939-1471</identifier><identifier>DOI: 10.1037/a0021110</identifier><identifier>PMID: 21058871</identifier><identifier>CODEN: PSRVAX</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Active Learning ; Bayes Theorem ; Bias ; Biological and medical sciences ; Classification ; Cognition & reasoning ; Cognition. Intelligence ; Cognitive Hypothesis Testing ; Cognitive psychology ; Critical thinking ; Fundamental and applied biological sciences. Psychology ; Human ; Humans ; Hypothesis ; Hypothesis Testing ; Learning ; Learning Strategies ; Memory ; Methodology ; Models, Psychological ; Preferences ; Problem-Based Learning ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Reasoning. Problem solving ; Research methods</subject><ispartof>Psychological review, 2011-01, Vol.118 (1), p.120-134</ispartof><rights>2010 American Psychological Association</rights><rights>2015 INIST-CNRS</rights><rights>2010, American Psychological Association</rights><rights>Copyright American Psychological Association Jan 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a556t-1625a165675049cb1912e879754c82cba6fae95315d05e666da6f8b4a873a9073</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ933604$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23757016$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21058871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Anderson, John</contributor><creatorcontrib>Navarro, Daniel J</creatorcontrib><creatorcontrib>Perfors, Amy F</creatorcontrib><title>Hypothesis Generation, Sparse Categories, and the Positive Test Strategy</title><title>Psychological review</title><addtitle>Psychol Rev</addtitle><description>We consider the situation in which a learner must induce the rule that explains an observed set of data but the hypothesis space of possible rules is not explicitly enumerated or identified. The first part of the article demonstrates that as long as hypotheses are sparse (i.e., index less than half of the possible entities in the domain) then a positive test strategy is near optimal. The second part of this article then demonstrates that a preference for sparse hypotheses (a sparsity bias) emerges as a natural consequence of the family resemblance principle; that is, it arises from the requirement that good rules index entities that are more similar to one another than they are to entities that do not satisfy the rule.</description><subject>Active Learning</subject><subject>Bayes Theorem</subject><subject>Bias</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>Cognition & reasoning</subject><subject>Cognition. Intelligence</subject><subject>Cognitive Hypothesis Testing</subject><subject>Cognitive psychology</subject><subject>Critical thinking</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human</subject><subject>Humans</subject><subject>Hypothesis</subject><subject>Hypothesis Testing</subject><subject>Learning</subject><subject>Learning Strategies</subject><subject>Memory</subject><subject>Methodology</subject><subject>Models, Psychological</subject><subject>Preferences</subject><subject>Problem-Based Learning</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Reasoning. Problem solving</subject><subject>Research methods</subject><issn>0033-295X</issn><issn>1939-1471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0d9rFDEQB_Agir1WwT9AZBFEH241k2x-PcpRe0pBoRV8C3O5OU3Z212T3cL9981x1wo-6LwEZj4ME76MvQD-Hrg0H5BzAQD8EZuBk66GxsBjNuNcylo49eOEneZ8w0uBc0_ZiQCurDUwY8vlbujHX5Rjri6oo4Rj7Lt5dTVgylQtcKSffYqU5xV266rI6luf4xhvqbqmPFZXY9qb3TP2ZINtpufH94x9_3R-vVjWl18vPi8-XtaolB5r0EIhaKWN4o0LK3AgyBpnVBOsCCvUGySnJKg1V6S1XpeOXTVojUTHjTxjbw97h9T_nsoFfhtzoLbFjvope6tBWS2E-L9UICQ4rop8_Ze86afUlW8U1DgllHH_QkZLoVRjm4LeHVBIfc6JNn5IcYtp54H7fVT-PqpCXx33TastrR_gfTYFvDkCzAHbTcIuxPzHSaMMB13cy4OjFMPD-PyLk1Lz_UnzwxgH9EPeBUxjDC3lMKVE3egT3XoA68GD4PIOESav1g</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Navarro, Daniel J</creator><creator>Perfors, Amy F</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PSYQQ</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope></search><sort><creationdate>201101</creationdate><title>Hypothesis Generation, Sparse Categories, and the Positive Test Strategy</title><author>Navarro, Daniel J ; Perfors, Amy F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a556t-1625a165675049cb1912e879754c82cba6fae95315d05e666da6f8b4a873a9073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Active Learning</topic><topic>Bayes Theorem</topic><topic>Bias</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>Cognition & reasoning</topic><topic>Cognition. Intelligence</topic><topic>Cognitive Hypothesis Testing</topic><topic>Cognitive psychology</topic><topic>Critical thinking</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human</topic><topic>Humans</topic><topic>Hypothesis</topic><topic>Hypothesis Testing</topic><topic>Learning</topic><topic>Learning Strategies</topic><topic>Memory</topic><topic>Methodology</topic><topic>Models, Psychological</topic><topic>Preferences</topic><topic>Problem-Based Learning</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Reasoning. Problem solving</topic><topic>Research methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navarro, Daniel J</creatorcontrib><creatorcontrib>Perfors, Amy F</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Psychology</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navarro, Daniel J</au><au>Perfors, Amy F</au><au>Anderson, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ933604</ericid><atitle>Hypothesis Generation, Sparse Categories, and the Positive Test Strategy</atitle><jtitle>Psychological review</jtitle><addtitle>Psychol Rev</addtitle><date>2011-01</date><risdate>2011</risdate><volume>118</volume><issue>1</issue><spage>120</spage><epage>134</epage><pages>120-134</pages><issn>0033-295X</issn><eissn>1939-1471</eissn><coden>PSRVAX</coden><abstract>We consider the situation in which a learner must induce the rule that explains an observed set of data but the hypothesis space of possible rules is not explicitly enumerated or identified. The first part of the article demonstrates that as long as hypotheses are sparse (i.e., index less than half of the possible entities in the domain) then a positive test strategy is near optimal. The second part of this article then demonstrates that a preference for sparse hypotheses (a sparsity bias) emerges as a natural consequence of the family resemblance principle; that is, it arises from the requirement that good rules index entities that are more similar to one another than they are to entities that do not satisfy the rule.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>21058871</pmid><doi>10.1037/a0021110</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-295X |
ispartof | Psychological review, 2011-01, Vol.118 (1), p.120-134 |
issn | 0033-295X 1939-1471 |
language | eng |
recordid | cdi_proquest_miscellaneous_861586222 |
source | MEDLINE; EBSCOhost APA PsycARTICLES |
subjects | Active Learning Bayes Theorem Bias Biological and medical sciences Classification Cognition & reasoning Cognition. Intelligence Cognitive Hypothesis Testing Cognitive psychology Critical thinking Fundamental and applied biological sciences. Psychology Human Humans Hypothesis Hypothesis Testing Learning Learning Strategies Memory Methodology Models, Psychological Preferences Problem-Based Learning Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Reasoning. Problem solving Research methods |
title | Hypothesis Generation, Sparse Categories, and the Positive Test Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypothesis%20Generation,%20Sparse%20Categories,%20and%20the%20Positive%20Test%20Strategy&rft.jtitle=Psychological%20review&rft.au=Navarro,%20Daniel%20J&rft.date=2011-01&rft.volume=118&rft.issue=1&rft.spage=120&rft.epage=134&rft.pages=120-134&rft.issn=0033-295X&rft.eissn=1939-1471&rft.coden=PSRVAX&rft_id=info:doi/10.1037/a0021110&rft_dat=%3Cproquest_cross%3E2282723431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=763255484&rft_id=info:pmid/21058871&rft_ericid=EJ933604&rfr_iscdi=true |