Hypothesis Generation, Sparse Categories, and the Positive Test Strategy

We consider the situation in which a learner must induce the rule that explains an observed set of data but the hypothesis space of possible rules is not explicitly enumerated or identified. The first part of the article demonstrates that as long as hypotheses are sparse (i.e., index less than half...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological review 2011-01, Vol.118 (1), p.120-134
Hauptverfasser: Navarro, Daniel J, Perfors, Amy F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue 1
container_start_page 120
container_title Psychological review
container_volume 118
creator Navarro, Daniel J
Perfors, Amy F
description We consider the situation in which a learner must induce the rule that explains an observed set of data but the hypothesis space of possible rules is not explicitly enumerated or identified. The first part of the article demonstrates that as long as hypotheses are sparse (i.e., index less than half of the possible entities in the domain) then a positive test strategy is near optimal. The second part of this article then demonstrates that a preference for sparse hypotheses (a sparsity bias) emerges as a natural consequence of the family resemblance principle; that is, it arises from the requirement that good rules index entities that are more similar to one another than they are to entities that do not satisfy the rule.
doi_str_mv 10.1037/a0021110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861586222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ933604</ericid><sourcerecordid>2282723431</sourcerecordid><originalsourceid>FETCH-LOGICAL-a556t-1625a165675049cb1912e879754c82cba6fae95315d05e666da6f8b4a873a9073</originalsourceid><addsrcrecordid>eNqF0d9rFDEQB_Agir1WwT9AZBFEH241k2x-PcpRe0pBoRV8C3O5OU3Z212T3cL9981x1wo-6LwEZj4ME76MvQD-Hrg0H5BzAQD8EZuBk66GxsBjNuNcylo49eOEneZ8w0uBc0_ZiQCurDUwY8vlbujHX5Rjri6oo4Rj7Lt5dTVgylQtcKSffYqU5xV266rI6luf4xhvqbqmPFZXY9qb3TP2ZINtpufH94x9_3R-vVjWl18vPi8-XtaolB5r0EIhaKWN4o0LK3AgyBpnVBOsCCvUGySnJKg1V6S1XpeOXTVojUTHjTxjbw97h9T_nsoFfhtzoLbFjvope6tBWS2E-L9UICQ4rop8_Ze86afUlW8U1DgllHH_QkZLoVRjm4LeHVBIfc6JNn5IcYtp54H7fVT-PqpCXx33TastrR_gfTYFvDkCzAHbTcIuxPzHSaMMB13cy4OjFMPD-PyLk1Lz_UnzwxgH9EPeBUxjDC3lMKVE3egT3XoA68GD4PIOESav1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763255484</pqid></control><display><type>article</type><title>Hypothesis Generation, Sparse Categories, and the Positive Test Strategy</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><creator>Navarro, Daniel J ; Perfors, Amy F</creator><contributor>Anderson, John</contributor><creatorcontrib>Navarro, Daniel J ; Perfors, Amy F ; Anderson, John</creatorcontrib><description>We consider the situation in which a learner must induce the rule that explains an observed set of data but the hypothesis space of possible rules is not explicitly enumerated or identified. The first part of the article demonstrates that as long as hypotheses are sparse (i.e., index less than half of the possible entities in the domain) then a positive test strategy is near optimal. The second part of this article then demonstrates that a preference for sparse hypotheses (a sparsity bias) emerges as a natural consequence of the family resemblance principle; that is, it arises from the requirement that good rules index entities that are more similar to one another than they are to entities that do not satisfy the rule.</description><identifier>ISSN: 0033-295X</identifier><identifier>EISSN: 1939-1471</identifier><identifier>DOI: 10.1037/a0021110</identifier><identifier>PMID: 21058871</identifier><identifier>CODEN: PSRVAX</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Active Learning ; Bayes Theorem ; Bias ; Biological and medical sciences ; Classification ; Cognition &amp; reasoning ; Cognition. Intelligence ; Cognitive Hypothesis Testing ; Cognitive psychology ; Critical thinking ; Fundamental and applied biological sciences. Psychology ; Human ; Humans ; Hypothesis ; Hypothesis Testing ; Learning ; Learning Strategies ; Memory ; Methodology ; Models, Psychological ; Preferences ; Problem-Based Learning ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Reasoning. Problem solving ; Research methods</subject><ispartof>Psychological review, 2011-01, Vol.118 (1), p.120-134</ispartof><rights>2010 American Psychological Association</rights><rights>2015 INIST-CNRS</rights><rights>2010, American Psychological Association</rights><rights>Copyright American Psychological Association Jan 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a556t-1625a165675049cb1912e879754c82cba6fae95315d05e666da6f8b4a873a9073</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ933604$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23757016$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21058871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Anderson, John</contributor><creatorcontrib>Navarro, Daniel J</creatorcontrib><creatorcontrib>Perfors, Amy F</creatorcontrib><title>Hypothesis Generation, Sparse Categories, and the Positive Test Strategy</title><title>Psychological review</title><addtitle>Psychol Rev</addtitle><description>We consider the situation in which a learner must induce the rule that explains an observed set of data but the hypothesis space of possible rules is not explicitly enumerated or identified. The first part of the article demonstrates that as long as hypotheses are sparse (i.e., index less than half of the possible entities in the domain) then a positive test strategy is near optimal. The second part of this article then demonstrates that a preference for sparse hypotheses (a sparsity bias) emerges as a natural consequence of the family resemblance principle; that is, it arises from the requirement that good rules index entities that are more similar to one another than they are to entities that do not satisfy the rule.</description><subject>Active Learning</subject><subject>Bayes Theorem</subject><subject>Bias</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>Cognition &amp; reasoning</subject><subject>Cognition. Intelligence</subject><subject>Cognitive Hypothesis Testing</subject><subject>Cognitive psychology</subject><subject>Critical thinking</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human</subject><subject>Humans</subject><subject>Hypothesis</subject><subject>Hypothesis Testing</subject><subject>Learning</subject><subject>Learning Strategies</subject><subject>Memory</subject><subject>Methodology</subject><subject>Models, Psychological</subject><subject>Preferences</subject><subject>Problem-Based Learning</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Reasoning. Problem solving</subject><subject>Research methods</subject><issn>0033-295X</issn><issn>1939-1471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0d9rFDEQB_Agir1WwT9AZBFEH241k2x-PcpRe0pBoRV8C3O5OU3Z212T3cL9981x1wo-6LwEZj4ME76MvQD-Hrg0H5BzAQD8EZuBk66GxsBjNuNcylo49eOEneZ8w0uBc0_ZiQCurDUwY8vlbujHX5Rjri6oo4Rj7Lt5dTVgylQtcKSffYqU5xV266rI6luf4xhvqbqmPFZXY9qb3TP2ZINtpufH94x9_3R-vVjWl18vPi8-XtaolB5r0EIhaKWN4o0LK3AgyBpnVBOsCCvUGySnJKg1V6S1XpeOXTVojUTHjTxjbw97h9T_nsoFfhtzoLbFjvope6tBWS2E-L9UICQ4rop8_Ze86afUlW8U1DgllHH_QkZLoVRjm4LeHVBIfc6JNn5IcYtp54H7fVT-PqpCXx33TastrR_gfTYFvDkCzAHbTcIuxPzHSaMMB13cy4OjFMPD-PyLk1Lz_UnzwxgH9EPeBUxjDC3lMKVE3egT3XoA68GD4PIOESav1g</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Navarro, Daniel J</creator><creator>Perfors, Amy F</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PSYQQ</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope></search><sort><creationdate>201101</creationdate><title>Hypothesis Generation, Sparse Categories, and the Positive Test Strategy</title><author>Navarro, Daniel J ; Perfors, Amy F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a556t-1625a165675049cb1912e879754c82cba6fae95315d05e666da6f8b4a873a9073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Active Learning</topic><topic>Bayes Theorem</topic><topic>Bias</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>Cognition &amp; reasoning</topic><topic>Cognition. Intelligence</topic><topic>Cognitive Hypothesis Testing</topic><topic>Cognitive psychology</topic><topic>Critical thinking</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human</topic><topic>Humans</topic><topic>Hypothesis</topic><topic>Hypothesis Testing</topic><topic>Learning</topic><topic>Learning Strategies</topic><topic>Memory</topic><topic>Methodology</topic><topic>Models, Psychological</topic><topic>Preferences</topic><topic>Problem-Based Learning</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Reasoning. Problem solving</topic><topic>Research methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navarro, Daniel J</creatorcontrib><creatorcontrib>Perfors, Amy F</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Psychology</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navarro, Daniel J</au><au>Perfors, Amy F</au><au>Anderson, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ933604</ericid><atitle>Hypothesis Generation, Sparse Categories, and the Positive Test Strategy</atitle><jtitle>Psychological review</jtitle><addtitle>Psychol Rev</addtitle><date>2011-01</date><risdate>2011</risdate><volume>118</volume><issue>1</issue><spage>120</spage><epage>134</epage><pages>120-134</pages><issn>0033-295X</issn><eissn>1939-1471</eissn><coden>PSRVAX</coden><abstract>We consider the situation in which a learner must induce the rule that explains an observed set of data but the hypothesis space of possible rules is not explicitly enumerated or identified. The first part of the article demonstrates that as long as hypotheses are sparse (i.e., index less than half of the possible entities in the domain) then a positive test strategy is near optimal. The second part of this article then demonstrates that a preference for sparse hypotheses (a sparsity bias) emerges as a natural consequence of the family resemblance principle; that is, it arises from the requirement that good rules index entities that are more similar to one another than they are to entities that do not satisfy the rule.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>21058871</pmid><doi>10.1037/a0021110</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-295X
ispartof Psychological review, 2011-01, Vol.118 (1), p.120-134
issn 0033-295X
1939-1471
language eng
recordid cdi_proquest_miscellaneous_861586222
source MEDLINE; EBSCOhost APA PsycARTICLES
subjects Active Learning
Bayes Theorem
Bias
Biological and medical sciences
Classification
Cognition & reasoning
Cognition. Intelligence
Cognitive Hypothesis Testing
Cognitive psychology
Critical thinking
Fundamental and applied biological sciences. Psychology
Human
Humans
Hypothesis
Hypothesis Testing
Learning
Learning Strategies
Memory
Methodology
Models, Psychological
Preferences
Problem-Based Learning
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Reasoning. Problem solving
Research methods
title Hypothesis Generation, Sparse Categories, and the Positive Test Strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypothesis%20Generation,%20Sparse%20Categories,%20and%20the%20Positive%20Test%20Strategy&rft.jtitle=Psychological%20review&rft.au=Navarro,%20Daniel%20J&rft.date=2011-01&rft.volume=118&rft.issue=1&rft.spage=120&rft.epage=134&rft.pages=120-134&rft.issn=0033-295X&rft.eissn=1939-1471&rft.coden=PSRVAX&rft_id=info:doi/10.1037/a0021110&rft_dat=%3Cproquest_cross%3E2282723431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=763255484&rft_id=info:pmid/21058871&rft_ericid=EJ933604&rfr_iscdi=true