Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells
▶ The kinetic analysis of methanol oxidation on Pt–Ru/C shows the role of adsorbed CO. ▶ The porosity of carbon in Pt–Ru/C restricts the diffusion of soluble intermediates. ▶ The complete methanol oxidation is favoured on carbon-supported Pt–Ru. ▶ The methanol adsorption on Pt–Ru follows a Temkin is...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2011-04, Vol.196 (7), p.3503-3512 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3512 |
---|---|
container_issue | 7 |
container_start_page | 3503 |
container_title | Journal of power sources |
container_volume | 196 |
creator | Velázquez-Palenzuela, Amado Centellas, Francesc Garrido, José Antonio Arias, Conchita Rodríguez, Rosa María Brillas, Enric Cabot, Pere-Lluís |
description | ▶ The kinetic analysis of methanol oxidation on Pt–Ru/C shows the role of adsorbed CO. ▶ The porosity of carbon in Pt–Ru/C restricts the diffusion of soluble intermediates. ▶ The complete methanol oxidation is favoured on carbon-supported Pt–Ru. ▶ The methanol adsorption on Pt–Ru follows a Temkin isotherm. ▶ High-performance Pt–Ru/C is stable in front of methanol oxidation.
The kinetic parameters of carbon monoxide and methanol oxidation reactions on a high performance carbon-supported Pt–Ru electrocatalyst (HP 20% 1:1 Pt–Ru alloy on Vulcan XC-72 carbon black) have been studied using cyclic voltammetry and rotating disk electrode (RDE) techniques in 0.50
M H
2SO
4 and H
2SO
4 (0.06–0.92
M)
+
CH
3OH (0.10–1.00
M) solutions at 25.0–45.0
°C. CO oxidation showed an irreversible behaviour with an adsorption control giving an exchange current density of 2.3
×
10
−6
A
cm
−2 and a Tafel slope of 113
mV
dec
−1 (
α
=
0.52) at 25.0
°C. Methanol oxidation behaved as an irreversible mixed-controlled reaction, probably with generation of a soluble intermediate (such as HCHO or HCOOH), showing an exchange current density of 7.4
×
10
−6
A
cm
−2 and a Tafel slope of 199
mV
dec
−1 (
α
=
0.30) at 25.0
°C. Reaction orders of 0.5 for methanol and −0.5 for proton were found, which are compatible with the consideration of the reaction between Pt–CO and Ru–OH species as the rate-determining step, being the initial methanol adsorption adjustable to a Temkin isotherm. The activation energy calculated through Arrhenius plots was 58
kJ
mol
−1, practically independent of the applied potential. Methanol oxidation on carbon-supported Pt–Ru electrocatalyst was improved by multiple potential cycles, indicating the generation of hydrous ruthenium oxide, RuO
x
H
y
, which enhances the process. |
doi_str_mv | 10.1016/j.jpowsour.2010.12.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861568874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775310022500</els_id><sourcerecordid>861568874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-ed71c969d87cf6b288f54216ec0410fcb00e7d9b20e35b68e2f897ac1fa475fa3</originalsourceid><addsrcrecordid>eNqFUcGKFDEUDKLguPoLkovopcck3Z2XuSmLruKCInoO6fSLk6G70ybp1b35Dwt-oF9i2hn1phAI1Kt69agi5CFnW864fHrYHubwJYUlbgVbQbFlTXOLbLiCuhLQtrfJhtWgKoC2vkvupXRgjHEObEO-v_ETZm-pmcxwnXyiwVFrYhcmOoYpfPU9lllPR8x7M4WBrpDJvszL2_tPezpjdCGOZrJ4klZpmecQM_b0Xf7x7eb9QnFAm2OwJq8-mRYF7X0s4N_VbsGBWhyGdJ_ccWZI-OD0n5GPL198OH9VXb69eH3-_LKyDdS5wh643cldr8A62QmlXNsILtGyhjNnO8YQ-l0nGNZtJxUKp3ZgLHemgdaZ-ow8Pu6dY_i8YMp69Gm9wEwYlqSV5K1UCprCfPJPJgcAXkv2iyqPVBtDShGdnqMfTbzWnOm1Mn3QvyvTa2WaC10qK8JHJw-TrBlcLJH69EctaqUaDrLwnh15WKK58hh1sh5L_MdAdR_8_6x-AroVtYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777136074</pqid></control><display><type>article</type><title>Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells</title><source>Elsevier ScienceDirect Journals</source><creator>Velázquez-Palenzuela, Amado ; Centellas, Francesc ; Garrido, José Antonio ; Arias, Conchita ; Rodríguez, Rosa María ; Brillas, Enric ; Cabot, Pere-Lluís</creator><creatorcontrib>Velázquez-Palenzuela, Amado ; Centellas, Francesc ; Garrido, José Antonio ; Arias, Conchita ; Rodríguez, Rosa María ; Brillas, Enric ; Cabot, Pere-Lluís</creatorcontrib><description>▶ The kinetic analysis of methanol oxidation on Pt–Ru/C shows the role of adsorbed CO. ▶ The porosity of carbon in Pt–Ru/C restricts the diffusion of soluble intermediates. ▶ The complete methanol oxidation is favoured on carbon-supported Pt–Ru. ▶ The methanol adsorption on Pt–Ru follows a Temkin isotherm. ▶ High-performance Pt–Ru/C is stable in front of methanol oxidation.
The kinetic parameters of carbon monoxide and methanol oxidation reactions on a high performance carbon-supported Pt–Ru electrocatalyst (HP 20% 1:1 Pt–Ru alloy on Vulcan XC-72 carbon black) have been studied using cyclic voltammetry and rotating disk electrode (RDE) techniques in 0.50
M H
2SO
4 and H
2SO
4 (0.06–0.92
M)
+
CH
3OH (0.10–1.00
M) solutions at 25.0–45.0
°C. CO oxidation showed an irreversible behaviour with an adsorption control giving an exchange current density of 2.3
×
10
−6
A
cm
−2 and a Tafel slope of 113
mV
dec
−1 (
α
=
0.52) at 25.0
°C. Methanol oxidation behaved as an irreversible mixed-controlled reaction, probably with generation of a soluble intermediate (such as HCHO or HCOOH), showing an exchange current density of 7.4
×
10
−6
A
cm
−2 and a Tafel slope of 199
mV
dec
−1 (
α
=
0.30) at 25.0
°C. Reaction orders of 0.5 for methanol and −0.5 for proton were found, which are compatible with the consideration of the reaction between Pt–CO and Ru–OH species as the rate-determining step, being the initial methanol adsorption adjustable to a Temkin isotherm. The activation energy calculated through Arrhenius plots was 58
kJ
mol
−1, practically independent of the applied potential. Methanol oxidation on carbon-supported Pt–Ru electrocatalyst was improved by multiple potential cycles, indicating the generation of hydrous ruthenium oxide, RuO
x
H
y
, which enhances the process.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.12.044</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Applied sciences ; Carbon monoxide ; Catalysis ; Catalysts: preparations and properties ; Chemistry ; Current density ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrocatalysis ; Electrocatalysts ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemistry ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; General and physical chemistry ; Kinetic parameters ; Methanol oxidation reaction ; Methyl alcohol ; Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...) ; Oxidation ; Platinum ; Pt–Ru nanoparticles ; Tafel slopes ; Temkin isotherm ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of power sources, 2011-04, Vol.196 (7), p.3503-3512</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-ed71c969d87cf6b288f54216ec0410fcb00e7d9b20e35b68e2f897ac1fa475fa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775310022500$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23884176$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Velázquez-Palenzuela, Amado</creatorcontrib><creatorcontrib>Centellas, Francesc</creatorcontrib><creatorcontrib>Garrido, José Antonio</creatorcontrib><creatorcontrib>Arias, Conchita</creatorcontrib><creatorcontrib>Rodríguez, Rosa María</creatorcontrib><creatorcontrib>Brillas, Enric</creatorcontrib><creatorcontrib>Cabot, Pere-Lluís</creatorcontrib><title>Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells</title><title>Journal of power sources</title><description>▶ The kinetic analysis of methanol oxidation on Pt–Ru/C shows the role of adsorbed CO. ▶ The porosity of carbon in Pt–Ru/C restricts the diffusion of soluble intermediates. ▶ The complete methanol oxidation is favoured on carbon-supported Pt–Ru. ▶ The methanol adsorption on Pt–Ru follows a Temkin isotherm. ▶ High-performance Pt–Ru/C is stable in front of methanol oxidation.
The kinetic parameters of carbon monoxide and methanol oxidation reactions on a high performance carbon-supported Pt–Ru electrocatalyst (HP 20% 1:1 Pt–Ru alloy on Vulcan XC-72 carbon black) have been studied using cyclic voltammetry and rotating disk electrode (RDE) techniques in 0.50
M H
2SO
4 and H
2SO
4 (0.06–0.92
M)
+
CH
3OH (0.10–1.00
M) solutions at 25.0–45.0
°C. CO oxidation showed an irreversible behaviour with an adsorption control giving an exchange current density of 2.3
×
10
−6
A
cm
−2 and a Tafel slope of 113
mV
dec
−1 (
α
=
0.52) at 25.0
°C. Methanol oxidation behaved as an irreversible mixed-controlled reaction, probably with generation of a soluble intermediate (such as HCHO or HCOOH), showing an exchange current density of 7.4
×
10
−6
A
cm
−2 and a Tafel slope of 199
mV
dec
−1 (
α
=
0.30) at 25.0
°C. Reaction orders of 0.5 for methanol and −0.5 for proton were found, which are compatible with the consideration of the reaction between Pt–CO and Ru–OH species as the rate-determining step, being the initial methanol adsorption adjustable to a Temkin isotherm. The activation energy calculated through Arrhenius plots was 58
kJ
mol
−1, practically independent of the applied potential. Methanol oxidation on carbon-supported Pt–Ru electrocatalyst was improved by multiple potential cycles, indicating the generation of hydrous ruthenium oxide, RuO
x
H
y
, which enhances the process.</description><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Chemistry</subject><subject>Current density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Kinetic parameters</subject><subject>Methanol oxidation reaction</subject><subject>Methyl alcohol</subject><subject>Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)</subject><subject>Oxidation</subject><subject>Platinum</subject><subject>Pt–Ru nanoparticles</subject><subject>Tafel slopes</subject><subject>Temkin isotherm</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUcGKFDEUDKLguPoLkovopcck3Z2XuSmLruKCInoO6fSLk6G70ybp1b35Dwt-oF9i2hn1phAI1Kt69agi5CFnW864fHrYHubwJYUlbgVbQbFlTXOLbLiCuhLQtrfJhtWgKoC2vkvupXRgjHEObEO-v_ETZm-pmcxwnXyiwVFrYhcmOoYpfPU9lllPR8x7M4WBrpDJvszL2_tPezpjdCGOZrJ4klZpmecQM_b0Xf7x7eb9QnFAm2OwJq8-mRYF7X0s4N_VbsGBWhyGdJ_ccWZI-OD0n5GPL198OH9VXb69eH3-_LKyDdS5wh643cldr8A62QmlXNsILtGyhjNnO8YQ-l0nGNZtJxUKp3ZgLHemgdaZ-ow8Pu6dY_i8YMp69Gm9wEwYlqSV5K1UCprCfPJPJgcAXkv2iyqPVBtDShGdnqMfTbzWnOm1Mn3QvyvTa2WaC10qK8JHJw-TrBlcLJH69EctaqUaDrLwnh15WKK58hh1sh5L_MdAdR_8_6x-AroVtYw</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Velázquez-Palenzuela, Amado</creator><creator>Centellas, Francesc</creator><creator>Garrido, José Antonio</creator><creator>Arias, Conchita</creator><creator>Rodríguez, Rosa María</creator><creator>Brillas, Enric</creator><creator>Cabot, Pere-Lluís</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20110401</creationdate><title>Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells</title><author>Velázquez-Palenzuela, Amado ; Centellas, Francesc ; Garrido, José Antonio ; Arias, Conchita ; Rodríguez, Rosa María ; Brillas, Enric ; Cabot, Pere-Lluís</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-ed71c969d87cf6b288f54216ec0410fcb00e7d9b20e35b68e2f897ac1fa475fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Chemistry</topic><topic>Current density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Kinetic parameters</topic><topic>Methanol oxidation reaction</topic><topic>Methyl alcohol</topic><topic>Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)</topic><topic>Oxidation</topic><topic>Platinum</topic><topic>Pt–Ru nanoparticles</topic><topic>Tafel slopes</topic><topic>Temkin isotherm</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velázquez-Palenzuela, Amado</creatorcontrib><creatorcontrib>Centellas, Francesc</creatorcontrib><creatorcontrib>Garrido, José Antonio</creatorcontrib><creatorcontrib>Arias, Conchita</creatorcontrib><creatorcontrib>Rodríguez, Rosa María</creatorcontrib><creatorcontrib>Brillas, Enric</creatorcontrib><creatorcontrib>Cabot, Pere-Lluís</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velázquez-Palenzuela, Amado</au><au>Centellas, Francesc</au><au>Garrido, José Antonio</au><au>Arias, Conchita</au><au>Rodríguez, Rosa María</au><au>Brillas, Enric</au><au>Cabot, Pere-Lluís</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells</atitle><jtitle>Journal of power sources</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>196</volume><issue>7</issue><spage>3503</spage><epage>3512</epage><pages>3503-3512</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>▶ The kinetic analysis of methanol oxidation on Pt–Ru/C shows the role of adsorbed CO. ▶ The porosity of carbon in Pt–Ru/C restricts the diffusion of soluble intermediates. ▶ The complete methanol oxidation is favoured on carbon-supported Pt–Ru. ▶ The methanol adsorption on Pt–Ru follows a Temkin isotherm. ▶ High-performance Pt–Ru/C is stable in front of methanol oxidation.
The kinetic parameters of carbon monoxide and methanol oxidation reactions on a high performance carbon-supported Pt–Ru electrocatalyst (HP 20% 1:1 Pt–Ru alloy on Vulcan XC-72 carbon black) have been studied using cyclic voltammetry and rotating disk electrode (RDE) techniques in 0.50
M H
2SO
4 and H
2SO
4 (0.06–0.92
M)
+
CH
3OH (0.10–1.00
M) solutions at 25.0–45.0
°C. CO oxidation showed an irreversible behaviour with an adsorption control giving an exchange current density of 2.3
×
10
−6
A
cm
−2 and a Tafel slope of 113
mV
dec
−1 (
α
=
0.52) at 25.0
°C. Methanol oxidation behaved as an irreversible mixed-controlled reaction, probably with generation of a soluble intermediate (such as HCHO or HCOOH), showing an exchange current density of 7.4
×
10
−6
A
cm
−2 and a Tafel slope of 199
mV
dec
−1 (
α
=
0.30) at 25.0
°C. Reaction orders of 0.5 for methanol and −0.5 for proton were found, which are compatible with the consideration of the reaction between Pt–CO and Ru–OH species as the rate-determining step, being the initial methanol adsorption adjustable to a Temkin isotherm. The activation energy calculated through Arrhenius plots was 58
kJ
mol
−1, practically independent of the applied potential. Methanol oxidation on carbon-supported Pt–Ru electrocatalyst was improved by multiple potential cycles, indicating the generation of hydrous ruthenium oxide, RuO
x
H
y
, which enhances the process.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.12.044</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2011-04, Vol.196 (7), p.3503-3512 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_861568874 |
source | Elsevier ScienceDirect Journals |
subjects | Adsorption Applied sciences Carbon monoxide Catalysis Catalysts: preparations and properties Chemistry Current density Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrocatalysis Electrocatalysts Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemistry Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells General and physical chemistry Kinetic parameters Methanol oxidation reaction Methyl alcohol Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...) Oxidation Platinum Pt–Ru nanoparticles Tafel slopes Temkin isotherm Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20analysis%20of%20carbon%20monoxide%20and%20methanol%20oxidation%20on%20high%20performance%20carbon-supported%20Pt%E2%80%93Ru%20electrocatalyst%20for%20direct%20methanol%20fuel%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Vel%C3%A1zquez-Palenzuela,%20Amado&rft.date=2011-04-01&rft.volume=196&rft.issue=7&rft.spage=3503&rft.epage=3512&rft.pages=3503-3512&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.12.044&rft_dat=%3Cproquest_cross%3E861568874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777136074&rft_id=info:pmid/&rft_els_id=S0378775310022500&rfr_iscdi=true |