Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells

▶ The kinetic analysis of methanol oxidation on Pt–Ru/C shows the role of adsorbed CO. ▶ The porosity of carbon in Pt–Ru/C restricts the diffusion of soluble intermediates. ▶ The complete methanol oxidation is favoured on carbon-supported Pt–Ru. ▶ The methanol adsorption on Pt–Ru follows a Temkin is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2011-04, Vol.196 (7), p.3503-3512
Hauptverfasser: Velázquez-Palenzuela, Amado, Centellas, Francesc, Garrido, José Antonio, Arias, Conchita, Rodríguez, Rosa María, Brillas, Enric, Cabot, Pere-Lluís
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3512
container_issue 7
container_start_page 3503
container_title Journal of power sources
container_volume 196
creator Velázquez-Palenzuela, Amado
Centellas, Francesc
Garrido, José Antonio
Arias, Conchita
Rodríguez, Rosa María
Brillas, Enric
Cabot, Pere-Lluís
description ▶ The kinetic analysis of methanol oxidation on Pt–Ru/C shows the role of adsorbed CO. ▶ The porosity of carbon in Pt–Ru/C restricts the diffusion of soluble intermediates. ▶ The complete methanol oxidation is favoured on carbon-supported Pt–Ru. ▶ The methanol adsorption on Pt–Ru follows a Temkin isotherm. ▶ High-performance Pt–Ru/C is stable in front of methanol oxidation. The kinetic parameters of carbon monoxide and methanol oxidation reactions on a high performance carbon-supported Pt–Ru electrocatalyst (HP 20% 1:1 Pt–Ru alloy on Vulcan XC-72 carbon black) have been studied using cyclic voltammetry and rotating disk electrode (RDE) techniques in 0.50 M H 2SO 4 and H 2SO 4 (0.06–0.92 M) + CH 3OH (0.10–1.00 M) solutions at 25.0–45.0 °C. CO oxidation showed an irreversible behaviour with an adsorption control giving an exchange current density of 2.3 × 10 −6 A cm −2 and a Tafel slope of 113 mV dec −1 ( α = 0.52) at 25.0 °C. Methanol oxidation behaved as an irreversible mixed-controlled reaction, probably with generation of a soluble intermediate (such as HCHO or HCOOH), showing an exchange current density of 7.4 × 10 −6 A cm −2 and a Tafel slope of 199 mV dec −1 ( α = 0.30) at 25.0 °C. Reaction orders of 0.5 for methanol and −0.5 for proton were found, which are compatible with the consideration of the reaction between Pt–CO and Ru–OH species as the rate-determining step, being the initial methanol adsorption adjustable to a Temkin isotherm. The activation energy calculated through Arrhenius plots was 58 kJ mol −1, practically independent of the applied potential. Methanol oxidation on carbon-supported Pt–Ru electrocatalyst was improved by multiple potential cycles, indicating the generation of hydrous ruthenium oxide, RuO x H y , which enhances the process.
doi_str_mv 10.1016/j.jpowsour.2010.12.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861568874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775310022500</els_id><sourcerecordid>861568874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-ed71c969d87cf6b288f54216ec0410fcb00e7d9b20e35b68e2f897ac1fa475fa3</originalsourceid><addsrcrecordid>eNqFUcGKFDEUDKLguPoLkovopcck3Z2XuSmLruKCInoO6fSLk6G70ybp1b35Dwt-oF9i2hn1phAI1Kt69agi5CFnW864fHrYHubwJYUlbgVbQbFlTXOLbLiCuhLQtrfJhtWgKoC2vkvupXRgjHEObEO-v_ETZm-pmcxwnXyiwVFrYhcmOoYpfPU9lllPR8x7M4WBrpDJvszL2_tPezpjdCGOZrJ4klZpmecQM_b0Xf7x7eb9QnFAm2OwJq8-mRYF7X0s4N_VbsGBWhyGdJ_ccWZI-OD0n5GPL198OH9VXb69eH3-_LKyDdS5wh643cldr8A62QmlXNsILtGyhjNnO8YQ-l0nGNZtJxUKp3ZgLHemgdaZ-ow8Pu6dY_i8YMp69Gm9wEwYlqSV5K1UCprCfPJPJgcAXkv2iyqPVBtDShGdnqMfTbzWnOm1Mn3QvyvTa2WaC10qK8JHJw-TrBlcLJH69EctaqUaDrLwnh15WKK58hh1sh5L_MdAdR_8_6x-AroVtYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777136074</pqid></control><display><type>article</type><title>Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells</title><source>Elsevier ScienceDirect Journals</source><creator>Velázquez-Palenzuela, Amado ; Centellas, Francesc ; Garrido, José Antonio ; Arias, Conchita ; Rodríguez, Rosa María ; Brillas, Enric ; Cabot, Pere-Lluís</creator><creatorcontrib>Velázquez-Palenzuela, Amado ; Centellas, Francesc ; Garrido, José Antonio ; Arias, Conchita ; Rodríguez, Rosa María ; Brillas, Enric ; Cabot, Pere-Lluís</creatorcontrib><description>▶ The kinetic analysis of methanol oxidation on Pt–Ru/C shows the role of adsorbed CO. ▶ The porosity of carbon in Pt–Ru/C restricts the diffusion of soluble intermediates. ▶ The complete methanol oxidation is favoured on carbon-supported Pt–Ru. ▶ The methanol adsorption on Pt–Ru follows a Temkin isotherm. ▶ High-performance Pt–Ru/C is stable in front of methanol oxidation. The kinetic parameters of carbon monoxide and methanol oxidation reactions on a high performance carbon-supported Pt–Ru electrocatalyst (HP 20% 1:1 Pt–Ru alloy on Vulcan XC-72 carbon black) have been studied using cyclic voltammetry and rotating disk electrode (RDE) techniques in 0.50 M H 2SO 4 and H 2SO 4 (0.06–0.92 M) + CH 3OH (0.10–1.00 M) solutions at 25.0–45.0 °C. CO oxidation showed an irreversible behaviour with an adsorption control giving an exchange current density of 2.3 × 10 −6 A cm −2 and a Tafel slope of 113 mV dec −1 ( α = 0.52) at 25.0 °C. Methanol oxidation behaved as an irreversible mixed-controlled reaction, probably with generation of a soluble intermediate (such as HCHO or HCOOH), showing an exchange current density of 7.4 × 10 −6 A cm −2 and a Tafel slope of 199 mV dec −1 ( α = 0.30) at 25.0 °C. Reaction orders of 0.5 for methanol and −0.5 for proton were found, which are compatible with the consideration of the reaction between Pt–CO and Ru–OH species as the rate-determining step, being the initial methanol adsorption adjustable to a Temkin isotherm. The activation energy calculated through Arrhenius plots was 58 kJ mol −1, practically independent of the applied potential. Methanol oxidation on carbon-supported Pt–Ru electrocatalyst was improved by multiple potential cycles, indicating the generation of hydrous ruthenium oxide, RuO x H y , which enhances the process.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.12.044</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Applied sciences ; Carbon monoxide ; Catalysis ; Catalysts: preparations and properties ; Chemistry ; Current density ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrocatalysis ; Electrocatalysts ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemistry ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; General and physical chemistry ; Kinetic parameters ; Methanol oxidation reaction ; Methyl alcohol ; Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...) ; Oxidation ; Platinum ; Pt–Ru nanoparticles ; Tafel slopes ; Temkin isotherm ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of power sources, 2011-04, Vol.196 (7), p.3503-3512</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-ed71c969d87cf6b288f54216ec0410fcb00e7d9b20e35b68e2f897ac1fa475fa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775310022500$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23884176$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Velázquez-Palenzuela, Amado</creatorcontrib><creatorcontrib>Centellas, Francesc</creatorcontrib><creatorcontrib>Garrido, José Antonio</creatorcontrib><creatorcontrib>Arias, Conchita</creatorcontrib><creatorcontrib>Rodríguez, Rosa María</creatorcontrib><creatorcontrib>Brillas, Enric</creatorcontrib><creatorcontrib>Cabot, Pere-Lluís</creatorcontrib><title>Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells</title><title>Journal of power sources</title><description>▶ The kinetic analysis of methanol oxidation on Pt–Ru/C shows the role of adsorbed CO. ▶ The porosity of carbon in Pt–Ru/C restricts the diffusion of soluble intermediates. ▶ The complete methanol oxidation is favoured on carbon-supported Pt–Ru. ▶ The methanol adsorption on Pt–Ru follows a Temkin isotherm. ▶ High-performance Pt–Ru/C is stable in front of methanol oxidation. The kinetic parameters of carbon monoxide and methanol oxidation reactions on a high performance carbon-supported Pt–Ru electrocatalyst (HP 20% 1:1 Pt–Ru alloy on Vulcan XC-72 carbon black) have been studied using cyclic voltammetry and rotating disk electrode (RDE) techniques in 0.50 M H 2SO 4 and H 2SO 4 (0.06–0.92 M) + CH 3OH (0.10–1.00 M) solutions at 25.0–45.0 °C. CO oxidation showed an irreversible behaviour with an adsorption control giving an exchange current density of 2.3 × 10 −6 A cm −2 and a Tafel slope of 113 mV dec −1 ( α = 0.52) at 25.0 °C. Methanol oxidation behaved as an irreversible mixed-controlled reaction, probably with generation of a soluble intermediate (such as HCHO or HCOOH), showing an exchange current density of 7.4 × 10 −6 A cm −2 and a Tafel slope of 199 mV dec −1 ( α = 0.30) at 25.0 °C. Reaction orders of 0.5 for methanol and −0.5 for proton were found, which are compatible with the consideration of the reaction between Pt–CO and Ru–OH species as the rate-determining step, being the initial methanol adsorption adjustable to a Temkin isotherm. The activation energy calculated through Arrhenius plots was 58 kJ mol −1, practically independent of the applied potential. Methanol oxidation on carbon-supported Pt–Ru electrocatalyst was improved by multiple potential cycles, indicating the generation of hydrous ruthenium oxide, RuO x H y , which enhances the process.</description><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Chemistry</subject><subject>Current density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Kinetic parameters</subject><subject>Methanol oxidation reaction</subject><subject>Methyl alcohol</subject><subject>Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)</subject><subject>Oxidation</subject><subject>Platinum</subject><subject>Pt–Ru nanoparticles</subject><subject>Tafel slopes</subject><subject>Temkin isotherm</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUcGKFDEUDKLguPoLkovopcck3Z2XuSmLruKCInoO6fSLk6G70ybp1b35Dwt-oF9i2hn1phAI1Kt69agi5CFnW864fHrYHubwJYUlbgVbQbFlTXOLbLiCuhLQtrfJhtWgKoC2vkvupXRgjHEObEO-v_ETZm-pmcxwnXyiwVFrYhcmOoYpfPU9lllPR8x7M4WBrpDJvszL2_tPezpjdCGOZrJ4klZpmecQM_b0Xf7x7eb9QnFAm2OwJq8-mRYF7X0s4N_VbsGBWhyGdJ_ccWZI-OD0n5GPL198OH9VXb69eH3-_LKyDdS5wh643cldr8A62QmlXNsILtGyhjNnO8YQ-l0nGNZtJxUKp3ZgLHemgdaZ-ow8Pu6dY_i8YMp69Gm9wEwYlqSV5K1UCprCfPJPJgcAXkv2iyqPVBtDShGdnqMfTbzWnOm1Mn3QvyvTa2WaC10qK8JHJw-TrBlcLJH69EctaqUaDrLwnh15WKK58hh1sh5L_MdAdR_8_6x-AroVtYw</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Velázquez-Palenzuela, Amado</creator><creator>Centellas, Francesc</creator><creator>Garrido, José Antonio</creator><creator>Arias, Conchita</creator><creator>Rodríguez, Rosa María</creator><creator>Brillas, Enric</creator><creator>Cabot, Pere-Lluís</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20110401</creationdate><title>Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells</title><author>Velázquez-Palenzuela, Amado ; Centellas, Francesc ; Garrido, José Antonio ; Arias, Conchita ; Rodríguez, Rosa María ; Brillas, Enric ; Cabot, Pere-Lluís</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-ed71c969d87cf6b288f54216ec0410fcb00e7d9b20e35b68e2f897ac1fa475fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Chemistry</topic><topic>Current density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Kinetic parameters</topic><topic>Methanol oxidation reaction</topic><topic>Methyl alcohol</topic><topic>Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)</topic><topic>Oxidation</topic><topic>Platinum</topic><topic>Pt–Ru nanoparticles</topic><topic>Tafel slopes</topic><topic>Temkin isotherm</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velázquez-Palenzuela, Amado</creatorcontrib><creatorcontrib>Centellas, Francesc</creatorcontrib><creatorcontrib>Garrido, José Antonio</creatorcontrib><creatorcontrib>Arias, Conchita</creatorcontrib><creatorcontrib>Rodríguez, Rosa María</creatorcontrib><creatorcontrib>Brillas, Enric</creatorcontrib><creatorcontrib>Cabot, Pere-Lluís</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velázquez-Palenzuela, Amado</au><au>Centellas, Francesc</au><au>Garrido, José Antonio</au><au>Arias, Conchita</au><au>Rodríguez, Rosa María</au><au>Brillas, Enric</au><au>Cabot, Pere-Lluís</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells</atitle><jtitle>Journal of power sources</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>196</volume><issue>7</issue><spage>3503</spage><epage>3512</epage><pages>3503-3512</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>▶ The kinetic analysis of methanol oxidation on Pt–Ru/C shows the role of adsorbed CO. ▶ The porosity of carbon in Pt–Ru/C restricts the diffusion of soluble intermediates. ▶ The complete methanol oxidation is favoured on carbon-supported Pt–Ru. ▶ The methanol adsorption on Pt–Ru follows a Temkin isotherm. ▶ High-performance Pt–Ru/C is stable in front of methanol oxidation. The kinetic parameters of carbon monoxide and methanol oxidation reactions on a high performance carbon-supported Pt–Ru electrocatalyst (HP 20% 1:1 Pt–Ru alloy on Vulcan XC-72 carbon black) have been studied using cyclic voltammetry and rotating disk electrode (RDE) techniques in 0.50 M H 2SO 4 and H 2SO 4 (0.06–0.92 M) + CH 3OH (0.10–1.00 M) solutions at 25.0–45.0 °C. CO oxidation showed an irreversible behaviour with an adsorption control giving an exchange current density of 2.3 × 10 −6 A cm −2 and a Tafel slope of 113 mV dec −1 ( α = 0.52) at 25.0 °C. Methanol oxidation behaved as an irreversible mixed-controlled reaction, probably with generation of a soluble intermediate (such as HCHO or HCOOH), showing an exchange current density of 7.4 × 10 −6 A cm −2 and a Tafel slope of 199 mV dec −1 ( α = 0.30) at 25.0 °C. Reaction orders of 0.5 for methanol and −0.5 for proton were found, which are compatible with the consideration of the reaction between Pt–CO and Ru–OH species as the rate-determining step, being the initial methanol adsorption adjustable to a Temkin isotherm. The activation energy calculated through Arrhenius plots was 58 kJ mol −1, practically independent of the applied potential. Methanol oxidation on carbon-supported Pt–Ru electrocatalyst was improved by multiple potential cycles, indicating the generation of hydrous ruthenium oxide, RuO x H y , which enhances the process.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.12.044</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2011-04, Vol.196 (7), p.3503-3512
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_861568874
source Elsevier ScienceDirect Journals
subjects Adsorption
Applied sciences
Carbon monoxide
Catalysis
Catalysts: preparations and properties
Chemistry
Current density
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrocatalysis
Electrocatalysts
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemistry
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
General and physical chemistry
Kinetic parameters
Methanol oxidation reaction
Methyl alcohol
Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)
Oxidation
Platinum
Pt–Ru nanoparticles
Tafel slopes
Temkin isotherm
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20analysis%20of%20carbon%20monoxide%20and%20methanol%20oxidation%20on%20high%20performance%20carbon-supported%20Pt%E2%80%93Ru%20electrocatalyst%20for%20direct%20methanol%20fuel%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Vel%C3%A1zquez-Palenzuela,%20Amado&rft.date=2011-04-01&rft.volume=196&rft.issue=7&rft.spage=3503&rft.epage=3512&rft.pages=3503-3512&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.12.044&rft_dat=%3Cproquest_cross%3E861568874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777136074&rft_id=info:pmid/&rft_els_id=S0378775310022500&rfr_iscdi=true