On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains

The aim of this paper is to investigate, in a bounded domain of R 3 , two blending sums of univariate and bivariate C 1 quadratic spline quasi-interpolants. The main problem consists in constructing the coefficient functionals associated with boundary generators, i.e. generators with supports not en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided geometric design 2011-02, Vol.28 (2), p.89-101
Hauptverfasser: Remogna, S., Sablonnière, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 2
container_start_page 89
container_title Computer aided geometric design
container_volume 28
creator Remogna, S.
Sablonnière, P.
description The aim of this paper is to investigate, in a bounded domain of R 3 , two blending sums of univariate and bivariate C 1 quadratic spline quasi-interpolants. The main problem consists in constructing the coefficient functionals associated with boundary generators, i.e. generators with supports not entirely inside the domain. In their definition, these functionals involve data points lying inside or on the boundary of the domain. Moreover, the weights of these functionals must be chosen so that the quasi-interpolants have the best approximation order and a reasonable infinite norm. We give their explicit constructions, infinite norms and error estimates. In order to illustrate the approximation properties of the proposed quasi-interpolants, some numerical examples are presented and compared with those obtained by some other trivariate quasi-interpolants given recently in the literature. ► Spline approximation. ► Quasi-interpolation operator. ► Trivariate splines.
doi_str_mv 10.1016/j.cagd.2010.12.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861568220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167839610001251</els_id><sourcerecordid>861568220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-7e067a23efc01b201fb7df7387c0734aff50ec59ba393db886e8048bc952bd713</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwFMu4mlrHu0mC16k-IJCL3oOeUxKyjbbJrsFv72pLT16Gmbm95_HH6F7SiaU0PppPbF65SaMHApsQgi7QCMqRVMxztklGhVIVJI39TW6yXlNCkGbeoTiMuI-hb1OQfeATQvRhbjCedhk3Hk8xHNPR4fNOdsN2iXdB4vztg3xr5BDFWIPadu1OvZFH7HphujAYddtdIj5Fl153Wa4O8Ux-n57_Zp_VIvl--f8ZVHZKan7SgCphWYcvCXUlK-8Ec4LLoUlgk-19zMCdtYYzRvujJQ1SDKVxjYzZpygfIwej3O3qdsNkHu1CdlCW-6CbshK1nRWS8ZIIdmRtKnLOYFX2xQ2Ov0oStTBW7VWB2_VwVtFmSrOFdHDabzOVrc-6WhDPisZl1TKZlq45yMH5dd9gKSyDRAtuJDA9sp14b81v_HlkaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861568220</pqid></control><display><type>article</type><title>On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Remogna, S. ; Sablonnière, P.</creator><creatorcontrib>Remogna, S. ; Sablonnière, P.</creatorcontrib><description>The aim of this paper is to investigate, in a bounded domain of R 3 , two blending sums of univariate and bivariate C 1 quadratic spline quasi-interpolants. The main problem consists in constructing the coefficient functionals associated with boundary generators, i.e. generators with supports not entirely inside the domain. In their definition, these functionals involve data points lying inside or on the boundary of the domain. Moreover, the weights of these functionals must be chosen so that the quasi-interpolants have the best approximation order and a reasonable infinite norm. We give their explicit constructions, infinite norms and error estimates. In order to illustrate the approximation properties of the proposed quasi-interpolants, some numerical examples are presented and compared with those obtained by some other trivariate quasi-interpolants given recently in the literature. ► Spline approximation. ► Quasi-interpolation operator. ► Trivariate splines.</description><identifier>ISSN: 0167-8396</identifier><identifier>EISSN: 1879-2332</identifier><identifier>DOI: 10.1016/j.cagd.2010.12.002</identifier><identifier>CODEN: CAGDEX</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Approximation ; Blending ; Boundaries ; Computer aided design ; Computer science; control theory; systems ; Exact sciences and technology ; Functionals ; Generators ; Mathematical analysis ; Mechanical engineering. Machine design ; Norms ; Quasi-interpolation operator ; Software ; Spline approximation ; Splines ; Trivariate splines</subject><ispartof>Computer aided geometric design, 2011-02, Vol.28 (2), p.89-101</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-7e067a23efc01b201fb7df7387c0734aff50ec59ba393db886e8048bc952bd713</citedby><cites>FETCH-LOGICAL-c406t-7e067a23efc01b201fb7df7387c0734aff50ec59ba393db886e8048bc952bd713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cagd.2010.12.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23818894$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Remogna, S.</creatorcontrib><creatorcontrib>Sablonnière, P.</creatorcontrib><title>On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains</title><title>Computer aided geometric design</title><description>The aim of this paper is to investigate, in a bounded domain of R 3 , two blending sums of univariate and bivariate C 1 quadratic spline quasi-interpolants. The main problem consists in constructing the coefficient functionals associated with boundary generators, i.e. generators with supports not entirely inside the domain. In their definition, these functionals involve data points lying inside or on the boundary of the domain. Moreover, the weights of these functionals must be chosen so that the quasi-interpolants have the best approximation order and a reasonable infinite norm. We give their explicit constructions, infinite norms and error estimates. In order to illustrate the approximation properties of the proposed quasi-interpolants, some numerical examples are presented and compared with those obtained by some other trivariate quasi-interpolants given recently in the literature. ► Spline approximation. ► Quasi-interpolation operator. ► Trivariate splines.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Blending</subject><subject>Boundaries</subject><subject>Computer aided design</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Functionals</subject><subject>Generators</subject><subject>Mathematical analysis</subject><subject>Mechanical engineering. Machine design</subject><subject>Norms</subject><subject>Quasi-interpolation operator</subject><subject>Software</subject><subject>Spline approximation</subject><subject>Splines</subject><subject>Trivariate splines</subject><issn>0167-8396</issn><issn>1879-2332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKtfwFMu4mlrHu0mC16k-IJCL3oOeUxKyjbbJrsFv72pLT16Gmbm95_HH6F7SiaU0PppPbF65SaMHApsQgi7QCMqRVMxztklGhVIVJI39TW6yXlNCkGbeoTiMuI-hb1OQfeATQvRhbjCedhk3Hk8xHNPR4fNOdsN2iXdB4vztg3xr5BDFWIPadu1OvZFH7HphujAYddtdIj5Fl153Wa4O8Ux-n57_Zp_VIvl--f8ZVHZKan7SgCphWYcvCXUlK-8Ec4LLoUlgk-19zMCdtYYzRvujJQ1SDKVxjYzZpygfIwej3O3qdsNkHu1CdlCW-6CbshK1nRWS8ZIIdmRtKnLOYFX2xQ2Ov0oStTBW7VWB2_VwVtFmSrOFdHDabzOVrc-6WhDPisZl1TKZlq45yMH5dd9gKSyDRAtuJDA9sp14b81v_HlkaA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Remogna, S.</creator><creator>Sablonnière, P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110201</creationdate><title>On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains</title><author>Remogna, S. ; Sablonnière, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-7e067a23efc01b201fb7df7387c0734aff50ec59ba393db886e8048bc952bd713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Blending</topic><topic>Boundaries</topic><topic>Computer aided design</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Functionals</topic><topic>Generators</topic><topic>Mathematical analysis</topic><topic>Mechanical engineering. Machine design</topic><topic>Norms</topic><topic>Quasi-interpolation operator</topic><topic>Software</topic><topic>Spline approximation</topic><topic>Splines</topic><topic>Trivariate splines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remogna, S.</creatorcontrib><creatorcontrib>Sablonnière, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided geometric design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Remogna, S.</au><au>Sablonnière, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains</atitle><jtitle>Computer aided geometric design</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>28</volume><issue>2</issue><spage>89</spage><epage>101</epage><pages>89-101</pages><issn>0167-8396</issn><eissn>1879-2332</eissn><coden>CAGDEX</coden><abstract>The aim of this paper is to investigate, in a bounded domain of R 3 , two blending sums of univariate and bivariate C 1 quadratic spline quasi-interpolants. The main problem consists in constructing the coefficient functionals associated with boundary generators, i.e. generators with supports not entirely inside the domain. In their definition, these functionals involve data points lying inside or on the boundary of the domain. Moreover, the weights of these functionals must be chosen so that the quasi-interpolants have the best approximation order and a reasonable infinite norm. We give their explicit constructions, infinite norms and error estimates. In order to illustrate the approximation properties of the proposed quasi-interpolants, some numerical examples are presented and compared with those obtained by some other trivariate quasi-interpolants given recently in the literature. ► Spline approximation. ► Quasi-interpolation operator. ► Trivariate splines.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cagd.2010.12.002</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8396
ispartof Computer aided geometric design, 2011-02, Vol.28 (2), p.89-101
issn 0167-8396
1879-2332
language eng
recordid cdi_proquest_miscellaneous_861568220
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Approximation
Blending
Boundaries
Computer aided design
Computer science
control theory
systems
Exact sciences and technology
Functionals
Generators
Mathematical analysis
Mechanical engineering. Machine design
Norms
Quasi-interpolation operator
Software
Spline approximation
Splines
Trivariate splines
title On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20trivariate%20blending%20sums%20of%20univariate%20and%20bivariate%20quadratic%20spline%20quasi-interpolants%20on%20bounded%20domains&rft.jtitle=Computer%20aided%20geometric%20design&rft.au=Remogna,%20S.&rft.date=2011-02-01&rft.volume=28&rft.issue=2&rft.spage=89&rft.epage=101&rft.pages=89-101&rft.issn=0167-8396&rft.eissn=1879-2332&rft.coden=CAGDEX&rft_id=info:doi/10.1016/j.cagd.2010.12.002&rft_dat=%3Cproquest_cross%3E861568220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861568220&rft_id=info:pmid/&rft_els_id=S0167839610001251&rfr_iscdi=true