A hybrid strategy for the time- and energy-efficient trajectory planning of parallel platform manipulators

In planning the trajectories of motor-driven parallel platform manipulators, the objective is to identify the trajectory which accomplishes the assigned motion with the minimal travel time and energy expenditure subject to the constraints imposed by the kinematics and dynamics of the manipulator str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotics and computer-integrated manufacturing 2011-02, Vol.27 (1), p.72-81
Hauptverfasser: Chen, Chun-Ta, Liao, Te-Tan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue 1
container_start_page 72
container_title Robotics and computer-integrated manufacturing
container_volume 27
creator Chen, Chun-Ta
Liao, Te-Tan
description In planning the trajectories of motor-driven parallel platform manipulators, the objective is to identify the trajectory which accomplishes the assigned motion with the minimal travel time and energy expenditure subject to the constraints imposed by the kinematics and dynamics of the manipulator structure. In this study, the possible trajectories of the manipulator are modeled using a parametric path representation, and the optimal trajectory is then obtained using a hybrid scheme comprising the particle swarm optimization method and the local conjugate gradient method. The numerical results confirm the feasibility of the optimized trajectories and show that the hybrid scheme is not only more computationally efficient than the standalone particle swarm optimization method, but also yields solutions of a higher quality.
doi_str_mv 10.1016/j.rcim.2010.06.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861567083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0736584510000633</els_id><sourcerecordid>861567083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-e551298474996cd0483eb1cfca64b01dd2e577f3247a8808b4663424b69e4383</originalsourceid><addsrcrecordid>eNp9kEtrwzAQhEVpoWnaP9CTbj051cuyDL2E0BcEesldyPI6kfGrklLwv69Meu5p2WFm2P0QeqRkQwmVz-3GW9dvGEkCkRtC2RVaUVWUGct5cY1WpOAyy5XIb9FdCC0hhImcr1C7xae58q7GIXoT4TjjZvQ4ngBH10OGzVBjGMAf5wyaxlkHQ8TJ2oKNo5_x1JlhcMMRjw2ejDddB90ixlTT494MbjqnbfThHt00pgvw8DfX6PD2eth9ZPuv98_ddp9ZzlnMIM8pK5UoRFlKWxOhOFTUNtZIURFa1wzyomg4E4VRiqhKSMkFE5UsQXDF1-jpUjv58fsMIereBQtduhPGc9BK0lwWRPHkZBen9WMIHho9edcbP2tK9IJVt3rBqhesmkidsKbQyyUE6YUfB16HhYmF2vmERNej-y_-Cw22geQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861567083</pqid></control><display><type>article</type><title>A hybrid strategy for the time- and energy-efficient trajectory planning of parallel platform manipulators</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Chun-Ta ; Liao, Te-Tan</creator><creatorcontrib>Chen, Chun-Ta ; Liao, Te-Tan</creatorcontrib><description>In planning the trajectories of motor-driven parallel platform manipulators, the objective is to identify the trajectory which accomplishes the assigned motion with the minimal travel time and energy expenditure subject to the constraints imposed by the kinematics and dynamics of the manipulator structure. In this study, the possible trajectories of the manipulator are modeled using a parametric path representation, and the optimal trajectory is then obtained using a hybrid scheme comprising the particle swarm optimization method and the local conjugate gradient method. The numerical results confirm the feasibility of the optimized trajectories and show that the hybrid scheme is not only more computationally efficient than the standalone particle swarm optimization method, but also yields solutions of a higher quality.</description><identifier>ISSN: 0736-5845</identifier><identifier>EISSN: 1879-2537</identifier><identifier>DOI: 10.1016/j.rcim.2010.06.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automation ; Conjugate gradient method ; Hybrid strategy ; Manipulators ; Mathematical models ; Optimization ; Parallel platform manipulator ; Particle swarm optimization ; Platforms ; Robot arms ; Trajectories ; Trajectory planning</subject><ispartof>Robotics and computer-integrated manufacturing, 2011-02, Vol.27 (1), p.72-81</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-e551298474996cd0483eb1cfca64b01dd2e577f3247a8808b4663424b69e4383</citedby><cites>FETCH-LOGICAL-c332t-e551298474996cd0483eb1cfca64b01dd2e577f3247a8808b4663424b69e4383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0736584510000633$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chen, Chun-Ta</creatorcontrib><creatorcontrib>Liao, Te-Tan</creatorcontrib><title>A hybrid strategy for the time- and energy-efficient trajectory planning of parallel platform manipulators</title><title>Robotics and computer-integrated manufacturing</title><description>In planning the trajectories of motor-driven parallel platform manipulators, the objective is to identify the trajectory which accomplishes the assigned motion with the minimal travel time and energy expenditure subject to the constraints imposed by the kinematics and dynamics of the manipulator structure. In this study, the possible trajectories of the manipulator are modeled using a parametric path representation, and the optimal trajectory is then obtained using a hybrid scheme comprising the particle swarm optimization method and the local conjugate gradient method. The numerical results confirm the feasibility of the optimized trajectories and show that the hybrid scheme is not only more computationally efficient than the standalone particle swarm optimization method, but also yields solutions of a higher quality.</description><subject>Automation</subject><subject>Conjugate gradient method</subject><subject>Hybrid strategy</subject><subject>Manipulators</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parallel platform manipulator</subject><subject>Particle swarm optimization</subject><subject>Platforms</subject><subject>Robot arms</subject><subject>Trajectories</subject><subject>Trajectory planning</subject><issn>0736-5845</issn><issn>1879-2537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrwzAQhEVpoWnaP9CTbj051cuyDL2E0BcEesldyPI6kfGrklLwv69Meu5p2WFm2P0QeqRkQwmVz-3GW9dvGEkCkRtC2RVaUVWUGct5cY1WpOAyy5XIb9FdCC0hhImcr1C7xae58q7GIXoT4TjjZvQ4ngBH10OGzVBjGMAf5wyaxlkHQ8TJ2oKNo5_x1JlhcMMRjw2ejDddB90ixlTT494MbjqnbfThHt00pgvw8DfX6PD2eth9ZPuv98_ddp9ZzlnMIM8pK5UoRFlKWxOhOFTUNtZIURFa1wzyomg4E4VRiqhKSMkFE5UsQXDF1-jpUjv58fsMIereBQtduhPGc9BK0lwWRPHkZBen9WMIHho9edcbP2tK9IJVt3rBqhesmkidsKbQyyUE6YUfB16HhYmF2vmERNej-y_-Cw22geQ</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Chen, Chun-Ta</creator><creator>Liao, Te-Tan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110201</creationdate><title>A hybrid strategy for the time- and energy-efficient trajectory planning of parallel platform manipulators</title><author>Chen, Chun-Ta ; Liao, Te-Tan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-e551298474996cd0483eb1cfca64b01dd2e577f3247a8808b4663424b69e4383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Automation</topic><topic>Conjugate gradient method</topic><topic>Hybrid strategy</topic><topic>Manipulators</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parallel platform manipulator</topic><topic>Particle swarm optimization</topic><topic>Platforms</topic><topic>Robot arms</topic><topic>Trajectories</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chun-Ta</creatorcontrib><creatorcontrib>Liao, Te-Tan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Robotics and computer-integrated manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chun-Ta</au><au>Liao, Te-Tan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid strategy for the time- and energy-efficient trajectory planning of parallel platform manipulators</atitle><jtitle>Robotics and computer-integrated manufacturing</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>27</volume><issue>1</issue><spage>72</spage><epage>81</epage><pages>72-81</pages><issn>0736-5845</issn><eissn>1879-2537</eissn><abstract>In planning the trajectories of motor-driven parallel platform manipulators, the objective is to identify the trajectory which accomplishes the assigned motion with the minimal travel time and energy expenditure subject to the constraints imposed by the kinematics and dynamics of the manipulator structure. In this study, the possible trajectories of the manipulator are modeled using a parametric path representation, and the optimal trajectory is then obtained using a hybrid scheme comprising the particle swarm optimization method and the local conjugate gradient method. The numerical results confirm the feasibility of the optimized trajectories and show that the hybrid scheme is not only more computationally efficient than the standalone particle swarm optimization method, but also yields solutions of a higher quality.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.rcim.2010.06.012</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0736-5845
ispartof Robotics and computer-integrated manufacturing, 2011-02, Vol.27 (1), p.72-81
issn 0736-5845
1879-2537
language eng
recordid cdi_proquest_miscellaneous_861567083
source Elsevier ScienceDirect Journals
subjects Automation
Conjugate gradient method
Hybrid strategy
Manipulators
Mathematical models
Optimization
Parallel platform manipulator
Particle swarm optimization
Platforms
Robot arms
Trajectories
Trajectory planning
title A hybrid strategy for the time- and energy-efficient trajectory planning of parallel platform manipulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20strategy%20for%20the%20time-%20and%20energy-efficient%20trajectory%20planning%20of%20parallel%20platform%20manipulators&rft.jtitle=Robotics%20and%20computer-integrated%20manufacturing&rft.au=Chen,%20Chun-Ta&rft.date=2011-02-01&rft.volume=27&rft.issue=1&rft.spage=72&rft.epage=81&rft.pages=72-81&rft.issn=0736-5845&rft.eissn=1879-2537&rft_id=info:doi/10.1016/j.rcim.2010.06.012&rft_dat=%3Cproquest_cross%3E861567083%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861567083&rft_id=info:pmid/&rft_els_id=S0736584510000633&rfr_iscdi=true