3D monolithic integration: Technological challenges and electrical results

After a short reminder of the principle of monolithic 3D integration, this paper firstly reviews the main technological challenges associated to this integration and proposes solutions to assess them. Wafer bonding is used to have perfect crystalline quality of the top layer at the wafer scale. Ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2011-04, Vol.88 (4), p.331-335
Hauptverfasser: Vinet, M., Batude, P., Tabone, C., Previtali, B., LeRoyer, C., Pouydebasque, A., Clavelier, L., Valentian, A., Thomas, O., Michaud, S., Sanchez, L., Baud, L., Roman, A., Carron, V., Nemouchi, F., Mazzocchi, V., Grampeix, H., Amara, A., Deleonibus, S., Faynot, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:After a short reminder of the principle of monolithic 3D integration, this paper firstly reviews the main technological challenges associated to this integration and proposes solutions to assess them. Wafer bonding is used to have perfect crystalline quality of the top layer at the wafer scale. Thermally stabilized silicide is developed to use standard salicidation scheme in the bottom layer. Finally a fully depleted SOI low temperature process is demonstrated for top layer processing (overall temperature kept below 650 °C). In a second part the electrical results obtained within this integration scheme are summarized: mixed Ge over Si invertor is demonstrated and electrostatic coupling between top and bottom layer is used to shift the threshold voltage of the top layer. Finally circuit opportunities such as stabilized SRAM or gain in density are investigated.
ISSN:0167-9317
1873-5568
DOI:10.1016/j.mee.2010.10.022