New Classes of Counterexamples to Hendrickson’s Global Rigidity Conjecture

We examine the generic local and global rigidity of various graphs in ℝ d . Bruce Hendrickson showed that some necessary conditions for generic global rigidity are ( d +1)-connectedness and generic redundant rigidity, and hypothesized that they were sufficient in all dimensions. We analyze two class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2011-04, Vol.45 (3), p.574-591
Hauptverfasser: Frank, Samuel, Jiang, Jiayang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 591
container_issue 3
container_start_page 574
container_title Discrete & computational geometry
container_volume 45
creator Frank, Samuel
Jiang, Jiayang
description We examine the generic local and global rigidity of various graphs in ℝ d . Bruce Hendrickson showed that some necessary conditions for generic global rigidity are ( d +1)-connectedness and generic redundant rigidity, and hypothesized that they were sufficient in all dimensions. We analyze two classes of graphs that satisfy Hendrickson’s conditions for generic global rigidity, yet fail to be generically globally rigid. We find a large family of bipartite graphs for d >3, and we define a construction that generates infinitely many graphs in ℝ 5 . Finally, we state some conjectures for further exploration.
doi_str_mv 10.1007/s00454-010-9259-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861565038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>861565038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-beb4c2e593ef919b563fc3d83386b011c536de7475d7705b5358ed5a037e641c3</originalsourceid><addsrcrecordid>eNp1kM1KxDAQgIMouK4-gLfixVN10vy1Rym6KywKoufQplPp2m3WpEV78zV8PZ_ELBUEwdPA8H3D8BFySuGCAqhLD8AFj4FCnCUii8c9MqOcJTFwzvfJDKjKYsGUPCRH3q8h4BmkM7K6w7cobwvv0Ue2jnI7dD06fC822zasehstsatcY1687b4-Pn20aG1ZtNFD89xUTT8GpVuj6QeHx-SgLlqPJz9zTp5urh_zZby6X9zmV6vYcCH7uMSSmwRFxrDOaFYKyWrDqpSxVJZAqRFMVqi4EpVSIErBRIqVKIAplJwaNifn092ts68D-l5vGm-wbYsO7eB1KqmQAlgayLM_5NoOrgvP6VQAZwo4BIhOkHHWe4e13rpmU7hRU9C7unqqq0Ndvaurx-Akk-MD2z2j-z38v_QNrm19mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>850437040</pqid></control><display><type>article</type><title>New Classes of Counterexamples to Hendrickson’s Global Rigidity Conjecture</title><source>SpringerLink Journals - AutoHoldings</source><creator>Frank, Samuel ; Jiang, Jiayang</creator><creatorcontrib>Frank, Samuel ; Jiang, Jiayang</creatorcontrib><description>We examine the generic local and global rigidity of various graphs in ℝ d . Bruce Hendrickson showed that some necessary conditions for generic global rigidity are ( d +1)-connectedness and generic redundant rigidity, and hypothesized that they were sufficient in all dimensions. We analyze two classes of graphs that satisfy Hendrickson’s conditions for generic global rigidity, yet fail to be generically globally rigid. We find a large family of bipartite graphs for d &gt;3, and we define a construction that generates infinitely many graphs in ℝ 5 . Finally, we state some conjectures for further exploration.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-010-9259-y</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Combinatorics ; Computational geometry ; Computational Mathematics and Numerical Analysis ; Construction ; Euclidean space ; Exploration ; Geometry ; Graphs ; Mathematics ; Mathematics and Statistics ; Matrix ; Redundant ; Rigidity</subject><ispartof>Discrete &amp; computational geometry, 2011-04, Vol.45 (3), p.574-591</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-beb4c2e593ef919b563fc3d83386b011c536de7475d7705b5358ed5a037e641c3</citedby><cites>FETCH-LOGICAL-c456t-beb4c2e593ef919b563fc3d83386b011c536de7475d7705b5358ed5a037e641c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-010-9259-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-010-9259-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Frank, Samuel</creatorcontrib><creatorcontrib>Jiang, Jiayang</creatorcontrib><title>New Classes of Counterexamples to Hendrickson’s Global Rigidity Conjecture</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>We examine the generic local and global rigidity of various graphs in ℝ d . Bruce Hendrickson showed that some necessary conditions for generic global rigidity are ( d +1)-connectedness and generic redundant rigidity, and hypothesized that they were sufficient in all dimensions. We analyze two classes of graphs that satisfy Hendrickson’s conditions for generic global rigidity, yet fail to be generically globally rigid. We find a large family of bipartite graphs for d &gt;3, and we define a construction that generates infinitely many graphs in ℝ 5 . Finally, we state some conjectures for further exploration.</description><subject>Combinatorics</subject><subject>Computational geometry</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Construction</subject><subject>Euclidean space</subject><subject>Exploration</subject><subject>Geometry</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix</subject><subject>Redundant</subject><subject>Rigidity</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1KxDAQgIMouK4-gLfixVN10vy1Rym6KywKoufQplPp2m3WpEV78zV8PZ_ELBUEwdPA8H3D8BFySuGCAqhLD8AFj4FCnCUii8c9MqOcJTFwzvfJDKjKYsGUPCRH3q8h4BmkM7K6w7cobwvv0Ue2jnI7dD06fC822zasehstsatcY1687b4-Pn20aG1ZtNFD89xUTT8GpVuj6QeHx-SgLlqPJz9zTp5urh_zZby6X9zmV6vYcCH7uMSSmwRFxrDOaFYKyWrDqpSxVJZAqRFMVqi4EpVSIErBRIqVKIAplJwaNifn092ts68D-l5vGm-wbYsO7eB1KqmQAlgayLM_5NoOrgvP6VQAZwo4BIhOkHHWe4e13rpmU7hRU9C7unqqq0Ndvaurx-Akk-MD2z2j-z38v_QNrm19mg</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Frank, Samuel</creator><creator>Jiang, Jiayang</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110401</creationdate><title>New Classes of Counterexamples to Hendrickson’s Global Rigidity Conjecture</title><author>Frank, Samuel ; Jiang, Jiayang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-beb4c2e593ef919b563fc3d83386b011c536de7475d7705b5358ed5a037e641c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Combinatorics</topic><topic>Computational geometry</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Construction</topic><topic>Euclidean space</topic><topic>Exploration</topic><topic>Geometry</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix</topic><topic>Redundant</topic><topic>Rigidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frank, Samuel</creatorcontrib><creatorcontrib>Jiang, Jiayang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frank, Samuel</au><au>Jiang, Jiayang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Classes of Counterexamples to Hendrickson’s Global Rigidity Conjecture</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>45</volume><issue>3</issue><spage>574</spage><epage>591</epage><pages>574-591</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>We examine the generic local and global rigidity of various graphs in ℝ d . Bruce Hendrickson showed that some necessary conditions for generic global rigidity are ( d +1)-connectedness and generic redundant rigidity, and hypothesized that they were sufficient in all dimensions. We analyze two classes of graphs that satisfy Hendrickson’s conditions for generic global rigidity, yet fail to be generically globally rigid. We find a large family of bipartite graphs for d &gt;3, and we define a construction that generates infinitely many graphs in ℝ 5 . Finally, we state some conjectures for further exploration.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00454-010-9259-y</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2011-04, Vol.45 (3), p.574-591
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_miscellaneous_861565038
source SpringerLink Journals - AutoHoldings
subjects Combinatorics
Computational geometry
Computational Mathematics and Numerical Analysis
Construction
Euclidean space
Exploration
Geometry
Graphs
Mathematics
Mathematics and Statistics
Matrix
Redundant
Rigidity
title New Classes of Counterexamples to Hendrickson’s Global Rigidity Conjecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Classes%20of%20Counterexamples%20to%20Hendrickson%E2%80%99s%20Global%20Rigidity%20Conjecture&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Frank,%20Samuel&rft.date=2011-04-01&rft.volume=45&rft.issue=3&rft.spage=574&rft.epage=591&rft.pages=574-591&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-010-9259-y&rft_dat=%3Cproquest_cross%3E861565038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=850437040&rft_id=info:pmid/&rfr_iscdi=true