Dimension of quasicircles
We introduce canonical antisymmetric quasiconformal maps, which minimize the quasiconformality constant among maps sending the unit circle to a given quasicircle. As an application we prove Astala’s conjecture that the Hausdorff dimension of a k -quasicircle is at most 1+ k 2 .
Gespeichert in:
Veröffentlicht in: | Acta mathematica 2010-09, Vol.205 (1), p.189-197 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 197 |
---|---|
container_issue | 1 |
container_start_page | 189 |
container_title | Acta mathematica |
container_volume | 205 |
creator | Smirnov, Stanislav |
description | We introduce canonical antisymmetric quasiconformal maps, which minimize the quasiconformality constant among maps sending the unit circle to a given quasicircle. As an application we prove Astala’s conjecture that the Hausdorff dimension of a
k
-quasicircle is at most 1+
k
2
. |
doi_str_mv | 10.1007/s11511-010-0053-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861544758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2192880031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-dfb2b0feacd61fc5b5bdac5cd96bf976a93e47bc5eea1396abce534e3948c8c63</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78gL0tgniKzjRNmhxl_YQFL3oOaZpIl267m9ke_Pe2dFEQPM1hnnl452VsjnCLAMUdIUpEDggcQAquj9gMdYE8k2CO2QwAkEujslN2RrQGyJSUasbmD_UmtFR37aKLi13vqPZ18k2gC3YSXUPh8jDP2cfT4_vyha_enl-X9yvu8wz2vIplVkIMzlcKo5elLCvnpa-MKqMplDMi5EXpZQgOhVGu9EGKPAiTa6-9EufsZvJuU7frA-3tpiYfmsa1oevJaoUyzwupB_LqD7nu-tQO4ayGIi-MlqMOJ8injiiFaLep3rj0ZRHsWJWdqrJDVXasyo7i64PYkXdNTK71Nf0cZmL4dIg7cNnE0bBqP0P6DfC__BtDkney</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807479856</pqid></control><display><type>article</type><title>Dimension of quasicircles</title><source>International Press Journals</source><source>Project Euclid Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Smirnov, Stanislav</creator><creatorcontrib>Smirnov, Stanislav</creatorcontrib><description>We introduce canonical antisymmetric quasiconformal maps, which minimize the quasiconformality constant among maps sending the unit circle to a given quasicircle. As an application we prove Astala’s conjecture that the Hausdorff dimension of a
k
-quasicircle is at most 1+
k
2
.</description><identifier>ISSN: 0001-5962</identifier><identifier>EISSN: 1871-2509</identifier><identifier>DOI: 10.1007/s11511-010-0053-8</identifier><identifier>CODEN: ACMAA8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Estimates ; Exact sciences and technology ; General mathematics ; General, history and biography ; Inequality ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Sciences and techniques of general use ; Studies ; Symmetry ; Theorems</subject><ispartof>Acta mathematica, 2010-09, Vol.205 (1), p.189-197</ispartof><rights>Institut Mittag-Leffler 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-dfb2b0feacd61fc5b5bdac5cd96bf976a93e47bc5eea1396abce534e3948c8c63</citedby><cites>FETCH-LOGICAL-c420t-dfb2b0feacd61fc5b5bdac5cd96bf976a93e47bc5eea1396abce534e3948c8c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11511-010-0053-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11511-010-0053-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23420948$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Smirnov, Stanislav</creatorcontrib><title>Dimension of quasicircles</title><title>Acta mathematica</title><addtitle>Acta Math</addtitle><description>We introduce canonical antisymmetric quasiconformal maps, which minimize the quasiconformality constant among maps sending the unit circle to a given quasicircle. As an application we prove Astala’s conjecture that the Hausdorff dimension of a
k
-quasicircle is at most 1+
k
2
.</description><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Inequality</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Symmetry</subject><subject>Theorems</subject><issn>0001-5962</issn><issn>1871-2509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouH78gL0tgniKzjRNmhxl_YQFL3oOaZpIl267m9ke_Pe2dFEQPM1hnnl452VsjnCLAMUdIUpEDggcQAquj9gMdYE8k2CO2QwAkEujslN2RrQGyJSUasbmD_UmtFR37aKLi13vqPZ18k2gC3YSXUPh8jDP2cfT4_vyha_enl-X9yvu8wz2vIplVkIMzlcKo5elLCvnpa-MKqMplDMi5EXpZQgOhVGu9EGKPAiTa6-9EufsZvJuU7frA-3tpiYfmsa1oevJaoUyzwupB_LqD7nu-tQO4ayGIi-MlqMOJ8injiiFaLep3rj0ZRHsWJWdqrJDVXasyo7i64PYkXdNTK71Nf0cZmL4dIg7cNnE0bBqP0P6DfC__BtDkney</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Smirnov, Stanislav</creator><general>Springer Netherlands</general><general>Springer</general><general>International Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201009</creationdate><title>Dimension of quasicircles</title><author>Smirnov, Stanislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-dfb2b0feacd61fc5b5bdac5cd96bf976a93e47bc5eea1396abce534e3948c8c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Inequality</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Symmetry</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, Stanislav</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, Stanislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimension of quasicircles</atitle><jtitle>Acta mathematica</jtitle><stitle>Acta Math</stitle><date>2010-09</date><risdate>2010</risdate><volume>205</volume><issue>1</issue><spage>189</spage><epage>197</epage><pages>189-197</pages><issn>0001-5962</issn><eissn>1871-2509</eissn><coden>ACMAA8</coden><abstract>We introduce canonical antisymmetric quasiconformal maps, which minimize the quasiconformality constant among maps sending the unit circle to a given quasicircle. As an application we prove Astala’s conjecture that the Hausdorff dimension of a
k
-quasicircle is at most 1+
k
2
.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11511-010-0053-8</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5962 |
ispartof | Acta mathematica, 2010-09, Vol.205 (1), p.189-197 |
issn | 0001-5962 1871-2509 |
language | eng |
recordid | cdi_proquest_miscellaneous_861544758 |
source | International Press Journals; Project Euclid Open Access; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings |
subjects | Estimates Exact sciences and technology General mathematics General, history and biography Inequality Mathematical models Mathematics Mathematics and Statistics Sciences and techniques of general use Studies Symmetry Theorems |
title | Dimension of quasicircles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimension%20of%20quasicircles&rft.jtitle=Acta%20mathematica&rft.au=Smirnov,%20Stanislav&rft.date=2010-09&rft.volume=205&rft.issue=1&rft.spage=189&rft.epage=197&rft.pages=189-197&rft.issn=0001-5962&rft.eissn=1871-2509&rft.coden=ACMAA8&rft_id=info:doi/10.1007/s11511-010-0053-8&rft_dat=%3Cproquest_cross%3E2192880031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=807479856&rft_id=info:pmid/&rfr_iscdi=true |