Dimension of quasicircles

We introduce canonical antisymmetric quasiconformal maps, which minimize the quasiconformality constant among maps sending the unit circle to a given quasicircle. As an application we prove Astala’s conjecture that the Hausdorff dimension of a k -quasicircle is at most 1+ k 2 .

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica 2010-09, Vol.205 (1), p.189-197
1. Verfasser: Smirnov, Stanislav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 1
container_start_page 189
container_title Acta mathematica
container_volume 205
creator Smirnov, Stanislav
description We introduce canonical antisymmetric quasiconformal maps, which minimize the quasiconformality constant among maps sending the unit circle to a given quasicircle. As an application we prove Astala’s conjecture that the Hausdorff dimension of a k -quasicircle is at most 1+ k 2 .
doi_str_mv 10.1007/s11511-010-0053-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861544758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2192880031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-dfb2b0feacd61fc5b5bdac5cd96bf976a93e47bc5eea1396abce534e3948c8c63</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78gL0tgniKzjRNmhxl_YQFL3oOaZpIl267m9ke_Pe2dFEQPM1hnnl452VsjnCLAMUdIUpEDggcQAquj9gMdYE8k2CO2QwAkEujslN2RrQGyJSUasbmD_UmtFR37aKLi13vqPZ18k2gC3YSXUPh8jDP2cfT4_vyha_enl-X9yvu8wz2vIplVkIMzlcKo5elLCvnpa-MKqMplDMi5EXpZQgOhVGu9EGKPAiTa6-9EufsZvJuU7frA-3tpiYfmsa1oevJaoUyzwupB_LqD7nu-tQO4ayGIi-MlqMOJ8injiiFaLep3rj0ZRHsWJWdqrJDVXasyo7i64PYkXdNTK71Nf0cZmL4dIg7cNnE0bBqP0P6DfC__BtDkney</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807479856</pqid></control><display><type>article</type><title>Dimension of quasicircles</title><source>International Press Journals</source><source>Project Euclid Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Smirnov, Stanislav</creator><creatorcontrib>Smirnov, Stanislav</creatorcontrib><description>We introduce canonical antisymmetric quasiconformal maps, which minimize the quasiconformality constant among maps sending the unit circle to a given quasicircle. As an application we prove Astala’s conjecture that the Hausdorff dimension of a k -quasicircle is at most 1+ k 2 .</description><identifier>ISSN: 0001-5962</identifier><identifier>EISSN: 1871-2509</identifier><identifier>DOI: 10.1007/s11511-010-0053-8</identifier><identifier>CODEN: ACMAA8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Estimates ; Exact sciences and technology ; General mathematics ; General, history and biography ; Inequality ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Sciences and techniques of general use ; Studies ; Symmetry ; Theorems</subject><ispartof>Acta mathematica, 2010-09, Vol.205 (1), p.189-197</ispartof><rights>Institut Mittag-Leffler 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-dfb2b0feacd61fc5b5bdac5cd96bf976a93e47bc5eea1396abce534e3948c8c63</citedby><cites>FETCH-LOGICAL-c420t-dfb2b0feacd61fc5b5bdac5cd96bf976a93e47bc5eea1396abce534e3948c8c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11511-010-0053-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11511-010-0053-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23420948$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Smirnov, Stanislav</creatorcontrib><title>Dimension of quasicircles</title><title>Acta mathematica</title><addtitle>Acta Math</addtitle><description>We introduce canonical antisymmetric quasiconformal maps, which minimize the quasiconformality constant among maps sending the unit circle to a given quasicircle. As an application we prove Astala’s conjecture that the Hausdorff dimension of a k -quasicircle is at most 1+ k 2 .</description><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Inequality</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Symmetry</subject><subject>Theorems</subject><issn>0001-5962</issn><issn>1871-2509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouH78gL0tgniKzjRNmhxl_YQFL3oOaZpIl267m9ke_Pe2dFEQPM1hnnl452VsjnCLAMUdIUpEDggcQAquj9gMdYE8k2CO2QwAkEujslN2RrQGyJSUasbmD_UmtFR37aKLi13vqPZ18k2gC3YSXUPh8jDP2cfT4_vyha_enl-X9yvu8wz2vIplVkIMzlcKo5elLCvnpa-MKqMplDMi5EXpZQgOhVGu9EGKPAiTa6-9EufsZvJuU7frA-3tpiYfmsa1oevJaoUyzwupB_LqD7nu-tQO4ayGIi-MlqMOJ8injiiFaLep3rj0ZRHsWJWdqrJDVXasyo7i64PYkXdNTK71Nf0cZmL4dIg7cNnE0bBqP0P6DfC__BtDkney</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Smirnov, Stanislav</creator><general>Springer Netherlands</general><general>Springer</general><general>International Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201009</creationdate><title>Dimension of quasicircles</title><author>Smirnov, Stanislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-dfb2b0feacd61fc5b5bdac5cd96bf976a93e47bc5eea1396abce534e3948c8c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Inequality</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Symmetry</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, Stanislav</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, Stanislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimension of quasicircles</atitle><jtitle>Acta mathematica</jtitle><stitle>Acta Math</stitle><date>2010-09</date><risdate>2010</risdate><volume>205</volume><issue>1</issue><spage>189</spage><epage>197</epage><pages>189-197</pages><issn>0001-5962</issn><eissn>1871-2509</eissn><coden>ACMAA8</coden><abstract>We introduce canonical antisymmetric quasiconformal maps, which minimize the quasiconformality constant among maps sending the unit circle to a given quasicircle. As an application we prove Astala’s conjecture that the Hausdorff dimension of a k -quasicircle is at most 1+ k 2 .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11511-010-0053-8</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-5962
ispartof Acta mathematica, 2010-09, Vol.205 (1), p.189-197
issn 0001-5962
1871-2509
language eng
recordid cdi_proquest_miscellaneous_861544758
source International Press Journals; Project Euclid Open Access; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects Estimates
Exact sciences and technology
General mathematics
General, history and biography
Inequality
Mathematical models
Mathematics
Mathematics and Statistics
Sciences and techniques of general use
Studies
Symmetry
Theorems
title Dimension of quasicircles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimension%20of%20quasicircles&rft.jtitle=Acta%20mathematica&rft.au=Smirnov,%20Stanislav&rft.date=2010-09&rft.volume=205&rft.issue=1&rft.spage=189&rft.epage=197&rft.pages=189-197&rft.issn=0001-5962&rft.eissn=1871-2509&rft.coden=ACMAA8&rft_id=info:doi/10.1007/s11511-010-0053-8&rft_dat=%3Cproquest_cross%3E2192880031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=807479856&rft_id=info:pmid/&rfr_iscdi=true