Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation

Compressed sensing (CS) has recently emerged as a powerful signal acquisition paradigm. In essence, CS enables the recovery of high-dimensional sparse signals from relatively few linear observations in the form of projections onto a collection of test vectors. Existing results show that if the entri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2010-11, Vol.56 (11), p.5862-5875
Hauptverfasser: Haupt, J, Bajwa, W U, Raz, G, Nowak, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5875
container_issue 11
container_start_page 5862
container_title IEEE transactions on information theory
container_volume 56
creator Haupt, J
Bajwa, W U
Raz, G
Nowak, R
description Compressed sensing (CS) has recently emerged as a powerful signal acquisition paradigm. In essence, CS enables the recovery of high-dimensional sparse signals from relatively few linear observations in the form of projections onto a collection of test vectors. Existing results show that if the entries of the test vectors are independent realizations of certain zero-mean random variables, then with high probability the unknown signals can be recovered by solving a tractable convex optimization. This work extends CS theory to settings where the entries of the test vectors exhibit structured statistical dependencies. It follows that CS can be effectively utilized in linear, time-invariant system identification problems provided the impulse response of the system is (approximately or exactly) sparse. An immediate application is in wireless multipath channel estimation. It is shown here that time-domain probing of a multipath channel with a random binary sequence, along with utilization of CS reconstruction techniques, can provide significant improvements in estimation accuracy compared to traditional least-squares based linear channel estimation strategies. Abstract extensions of the main results are also discussed, where the theory of equitable graph coloring is employed to establish the utility of CS in settings where the test vectors exhibit more general statistical dependencies.
doi_str_mv 10.1109/TIT.2010.2070191
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_861543449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5605341</ieee_id><sourcerecordid>2193168201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-7c32a8d6bca43928c03eabe61e8733317e167e827031388c95f71aad150e1b853</originalsourceid><addsrcrecordid>eNpdkEFrGzEQRkVpIa6Te6AXUSg5baJZSSvpaEzSGhxysEuOQpbHjcJ6d6tZH5JfH6U2OfQ0fMybYeYxdgniGkC4m_VifV2LkmphBDj4xCagtalco9VnNhECbOWUsmfsK9FziUpDPWGrdY9Dm8ZXPu_3Q0Yi3PIVdpS6P_w-jDlFJP6Yxic-GwoYw5j6jvjY89UQMiGfP4Wuw5bf0pj2_7rn7MsutIQXpzplv-9u1_Nf1fLh52I-W1ZROjdWJso62G2ziUFJV9soJIYNNoDWSCnBIDQGbW2EBGltdHpnIIQtaIGwsVpO2dVx75D7vwek0e8TRWzb0GF_IG8b0Eoq5Qr5_T_yuT_krhznrTC6KGtUgcQRirknyrjzQy4f5RcPwr879sWxf3fsT47LyI_T3kAxtLscupjoY66WUoOSonDfjlxCxI-2boSWCuQbIOGDsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807520764</pqid></control><display><type>article</type><title>Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Haupt, J ; Bajwa, W U ; Raz, G ; Nowak, R</creator><creatorcontrib>Haupt, J ; Bajwa, W U ; Raz, G ; Nowak, R</creatorcontrib><description>Compressed sensing (CS) has recently emerged as a powerful signal acquisition paradigm. In essence, CS enables the recovery of high-dimensional sparse signals from relatively few linear observations in the form of projections onto a collection of test vectors. Existing results show that if the entries of the test vectors are independent realizations of certain zero-mean random variables, then with high probability the unknown signals can be recovered by solving a tractable convex optimization. This work extends CS theory to settings where the entries of the test vectors exhibit structured statistical dependencies. It follows that CS can be effectively utilized in linear, time-invariant system identification problems provided the impulse response of the system is (approximately or exactly) sparse. An immediate application is in wireless multipath channel estimation. It is shown here that time-domain probing of a multipath channel with a random binary sequence, along with utilization of CS reconstruction techniques, can provide significant improvements in estimation accuracy compared to traditional least-squares based linear channel estimation strategies. Abstract extensions of the main results are also discussed, where the theory of equitable graph coloring is employed to establish the utility of CS in settings where the test vectors exhibit more general statistical dependencies.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2010.2070191</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algebra ; Applied sciences ; Channel estimation ; Channels ; Circulant matrices ; Compressed ; compressed sensing ; Detection ; Detection, estimation, filtering, equalization, prediction ; Estimation ; Exact sciences and technology ; Hankel matrices ; Impulse response ; Information theory ; Information, signal and communications theory ; Mathematical analysis ; Optimization ; Random variables ; Reconstruction ; restricted isometry property ; Sampling, quantization ; Signal and communications theory ; Signal processing ; Signal, noise ; sparse channel estimation ; Sparse matrices ; Sparsity ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Toeplitz matrices ; Training ; Transmission and modulation (techniques and equipments) ; Vector space ; Vectors ; Vectors (mathematics) ; Wireless communication ; wireless communications</subject><ispartof>IEEE transactions on information theory, 2010-11, Vol.56 (11), p.5862-5875</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-7c32a8d6bca43928c03eabe61e8733317e167e827031388c95f71aad150e1b853</citedby><cites>FETCH-LOGICAL-c399t-7c32a8d6bca43928c03eabe61e8733317e167e827031388c95f71aad150e1b853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5605341$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5605341$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23351430$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haupt, J</creatorcontrib><creatorcontrib>Bajwa, W U</creatorcontrib><creatorcontrib>Raz, G</creatorcontrib><creatorcontrib>Nowak, R</creatorcontrib><title>Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Compressed sensing (CS) has recently emerged as a powerful signal acquisition paradigm. In essence, CS enables the recovery of high-dimensional sparse signals from relatively few linear observations in the form of projections onto a collection of test vectors. Existing results show that if the entries of the test vectors are independent realizations of certain zero-mean random variables, then with high probability the unknown signals can be recovered by solving a tractable convex optimization. This work extends CS theory to settings where the entries of the test vectors exhibit structured statistical dependencies. It follows that CS can be effectively utilized in linear, time-invariant system identification problems provided the impulse response of the system is (approximately or exactly) sparse. An immediate application is in wireless multipath channel estimation. It is shown here that time-domain probing of a multipath channel with a random binary sequence, along with utilization of CS reconstruction techniques, can provide significant improvements in estimation accuracy compared to traditional least-squares based linear channel estimation strategies. Abstract extensions of the main results are also discussed, where the theory of equitable graph coloring is employed to establish the utility of CS in settings where the test vectors exhibit more general statistical dependencies.</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Channel estimation</subject><subject>Channels</subject><subject>Circulant matrices</subject><subject>Compressed</subject><subject>compressed sensing</subject><subject>Detection</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Hankel matrices</subject><subject>Impulse response</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Random variables</subject><subject>Reconstruction</subject><subject>restricted isometry property</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>sparse channel estimation</subject><subject>Sparse matrices</subject><subject>Sparsity</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Toeplitz matrices</subject><subject>Training</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Vector space</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><subject>Wireless communication</subject><subject>wireless communications</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFrGzEQRkVpIa6Te6AXUSg5baJZSSvpaEzSGhxysEuOQpbHjcJ6d6tZH5JfH6U2OfQ0fMybYeYxdgniGkC4m_VifV2LkmphBDj4xCagtalco9VnNhECbOWUsmfsK9FziUpDPWGrdY9Dm8ZXPu_3Q0Yi3PIVdpS6P_w-jDlFJP6Yxic-GwoYw5j6jvjY89UQMiGfP4Wuw5bf0pj2_7rn7MsutIQXpzplv-9u1_Nf1fLh52I-W1ZROjdWJso62G2ziUFJV9soJIYNNoDWSCnBIDQGbW2EBGltdHpnIIQtaIGwsVpO2dVx75D7vwek0e8TRWzb0GF_IG8b0Eoq5Qr5_T_yuT_krhznrTC6KGtUgcQRirknyrjzQy4f5RcPwr879sWxf3fsT47LyI_T3kAxtLscupjoY66WUoOSonDfjlxCxI-2boSWCuQbIOGDsg</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Haupt, J</creator><creator>Bajwa, W U</creator><creator>Raz, G</creator><creator>Nowak, R</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20101101</creationdate><title>Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation</title><author>Haupt, J ; Bajwa, W U ; Raz, G ; Nowak, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-7c32a8d6bca43928c03eabe61e8733317e167e827031388c95f71aad150e1b853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Channel estimation</topic><topic>Channels</topic><topic>Circulant matrices</topic><topic>Compressed</topic><topic>compressed sensing</topic><topic>Detection</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Hankel matrices</topic><topic>Impulse response</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Random variables</topic><topic>Reconstruction</topic><topic>restricted isometry property</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>sparse channel estimation</topic><topic>Sparse matrices</topic><topic>Sparsity</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Toeplitz matrices</topic><topic>Training</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Vector space</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><topic>Wireless communication</topic><topic>wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haupt, J</creatorcontrib><creatorcontrib>Bajwa, W U</creatorcontrib><creatorcontrib>Raz, G</creatorcontrib><creatorcontrib>Nowak, R</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haupt, J</au><au>Bajwa, W U</au><au>Raz, G</au><au>Nowak, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>56</volume><issue>11</issue><spage>5862</spage><epage>5875</epage><pages>5862-5875</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Compressed sensing (CS) has recently emerged as a powerful signal acquisition paradigm. In essence, CS enables the recovery of high-dimensional sparse signals from relatively few linear observations in the form of projections onto a collection of test vectors. Existing results show that if the entries of the test vectors are independent realizations of certain zero-mean random variables, then with high probability the unknown signals can be recovered by solving a tractable convex optimization. This work extends CS theory to settings where the entries of the test vectors exhibit structured statistical dependencies. It follows that CS can be effectively utilized in linear, time-invariant system identification problems provided the impulse response of the system is (approximately or exactly) sparse. An immediate application is in wireless multipath channel estimation. It is shown here that time-domain probing of a multipath channel with a random binary sequence, along with utilization of CS reconstruction techniques, can provide significant improvements in estimation accuracy compared to traditional least-squares based linear channel estimation strategies. Abstract extensions of the main results are also discussed, where the theory of equitable graph coloring is employed to establish the utility of CS in settings where the test vectors exhibit more general statistical dependencies.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2010.2070191</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2010-11, Vol.56 (11), p.5862-5875
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_861543449
source IEEE Electronic Library (IEL)
subjects Algebra
Applied sciences
Channel estimation
Channels
Circulant matrices
Compressed
compressed sensing
Detection
Detection, estimation, filtering, equalization, prediction
Estimation
Exact sciences and technology
Hankel matrices
Impulse response
Information theory
Information, signal and communications theory
Mathematical analysis
Optimization
Random variables
Reconstruction
restricted isometry property
Sampling, quantization
Signal and communications theory
Signal processing
Signal, noise
sparse channel estimation
Sparse matrices
Sparsity
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Toeplitz matrices
Training
Transmission and modulation (techniques and equipments)
Vector space
Vectors
Vectors (mathematics)
Wireless communication
wireless communications
title Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toeplitz%20Compressed%20Sensing%20Matrices%20With%20Applications%20to%20Sparse%20Channel%20Estimation&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Haupt,%20J&rft.date=2010-11-01&rft.volume=56&rft.issue=11&rft.spage=5862&rft.epage=5875&rft.pages=5862-5875&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2010.2070191&rft_dat=%3Cproquest_RIE%3E2193168201%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=807520764&rft_id=info:pmid/&rft_ieee_id=5605341&rfr_iscdi=true