Hydroxyapatite formation from cuttlefish bones: kinetics
Highly porous hydroxyapatite (Ca 10 (PO 4 ) 6 ·(OH) 2 , HA) was prepared through hydrothermal transformation of aragonitic cuttlefish bones ( Sepia officinalis L. Adriatic Sea) in the temperature range from 140 to 220°C for 20 min to 48 h. The phase composition of converted hydroxyapatite was examin...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2010-10, Vol.21 (10), p.2711-2722 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2722 |
---|---|
container_issue | 10 |
container_start_page | 2711 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 21 |
creator | Ivankovic, H. Tkalcec, E. Orlic, S. Gallego Ferrer, G. Schauperl, Z. |
description | Highly porous hydroxyapatite (Ca
10
(PO
4
)
6
·(OH)
2
, HA) was prepared through hydrothermal transformation of aragonitic cuttlefish bones (
Sepia officinalis
L. Adriatic Sea) in the temperature range from 140 to 220°C for 20 min to 48 h. The phase composition of converted hydroxyapatite was examined by quantitative X-ray diffraction (XRD) using Rietveld structure refinement and Fourier transform infrared spectroscopy (FTIR). Johnson–Mehl–Avrami (JMA) approach was used to follow the kinetics and mechanism of transformation. Diffusion controlled one dimensional growth of HA, predominantly along the
a
-axis, could be defined. FTIR spectroscopy determined B-type substitutions of CO
3
2−
groups. The morphology and microstructure of converted HA was examined by scanning electron microscopy. The general architecture of cuttlefish bones was preserved after hydrothermal treatment and the cuttlefish bones retained its form with the same channel size (~80 × 300 μm). The formation of dandelion-like HA spheres with diameter from 3 to 8 μm were observed on the surface of lamellae, which further transformed into various radially oriented nanoplates and nanorods with an average diameter of about 200–300 nm and an average length of about 8–10 μm. |
doi_str_mv | 10.1007/s10856-010-4115-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861541810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>861541810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-b72367a474b5205b8e30010ef684b454cc75e5f5e9313a02ccfada9e3bf4883f3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotn78AC-yCOIpOtkkm6w3KWqFghc9h2ya6NbdTU12wf57U1otCJ5mYJ6ZeXkQOiNwTQDETSQgeYGBAGaEcMz20JhwQTGTVO6jMZRcYMYpjNBRjAsAYCXnh2iUAy-ElHyM5HQ1D_5rpZe6r3ubOR_a1Pkuc8G3mRn6vrGuju9Z5Tsbb7OPurN9beIJOnC6ifZ0W4_R68P9y2SKZ8-PT5O7GTaM5j2uRE4LoZlgFU9fK2kppLzWFZJVjDNjBLfccVtSQjXkxjg916WllWNSUkeP0dXm7jL4z8HGXrV1NLZpdGf9EJUsCGdEEkjkxR9y4YfQpXBKgmCUCVkmiGwgE3yMwTq1DHWrw0oRUGupaiNVpZBqLVWxtHO-PTxUrZ3_bvxYTMDlFtDR6MYF3Zk67jiaVBSEJC7fcDGNujcbdgn___4NGVmNrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807434789</pqid></control><display><type>article</type><title>Hydroxyapatite formation from cuttlefish bones: kinetics</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ivankovic, H. ; Tkalcec, E. ; Orlic, S. ; Gallego Ferrer, G. ; Schauperl, Z.</creator><creatorcontrib>Ivankovic, H. ; Tkalcec, E. ; Orlic, S. ; Gallego Ferrer, G. ; Schauperl, Z.</creatorcontrib><description>Highly porous hydroxyapatite (Ca
10
(PO
4
)
6
·(OH)
2
, HA) was prepared through hydrothermal transformation of aragonitic cuttlefish bones (
Sepia officinalis
L. Adriatic Sea) in the temperature range from 140 to 220°C for 20 min to 48 h. The phase composition of converted hydroxyapatite was examined by quantitative X-ray diffraction (XRD) using Rietveld structure refinement and Fourier transform infrared spectroscopy (FTIR). Johnson–Mehl–Avrami (JMA) approach was used to follow the kinetics and mechanism of transformation. Diffusion controlled one dimensional growth of HA, predominantly along the
a
-axis, could be defined. FTIR spectroscopy determined B-type substitutions of CO
3
2−
groups. The morphology and microstructure of converted HA was examined by scanning electron microscopy. The general architecture of cuttlefish bones was preserved after hydrothermal treatment and the cuttlefish bones retained its form with the same channel size (~80 × 300 μm). The formation of dandelion-like HA spheres with diameter from 3 to 8 μm were observed on the surface of lamellae, which further transformed into various radially oriented nanoplates and nanorods with an average diameter of about 200–300 nm and an average length of about 8–10 μm.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-010-4115-4</identifier><identifier>PMID: 20567885</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Biocompatible Materials - chemical synthesis ; Biocompatible Materials - chemistry ; Biocompatible Materials - isolation & purification ; Biological and medical sciences ; Biological products ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Bone and Bones - chemistry ; Bone and Bones - ultrastructure ; Bones ; Calcium Carbonate - chemistry ; Calcium Carbonate - isolation & purification ; Ceramics ; Chemistry and Materials Science ; Composites ; Decapodiformes - metabolism ; Durapatite - chemical synthesis ; Durapatite - chemistry ; Durapatite - isolation & purification ; Glass ; Hot Temperature ; Kinetics ; Materials Science ; Medical sciences ; Microscopy, Electron, Scanning ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotubes - chemistry ; Nanotubes - ultrastructure ; Natural Materials ; Polymer Sciences ; Powder Diffraction ; Regenerative Medicine/Tissue Engineering ; Sepia officinalis ; Spectroscopy, Fourier Transform Infrared ; Surfaces and Interfaces ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Thin Films</subject><ispartof>Journal of materials science. Materials in medicine, 2010-10, Vol.21 (10), p.2711-2722</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-b72367a474b5205b8e30010ef684b454cc75e5f5e9313a02ccfada9e3bf4883f3</citedby><cites>FETCH-LOGICAL-c432t-b72367a474b5205b8e30010ef684b454cc75e5f5e9313a02ccfada9e3bf4883f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-010-4115-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-010-4115-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23432611$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20567885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivankovic, H.</creatorcontrib><creatorcontrib>Tkalcec, E.</creatorcontrib><creatorcontrib>Orlic, S.</creatorcontrib><creatorcontrib>Gallego Ferrer, G.</creatorcontrib><creatorcontrib>Schauperl, Z.</creatorcontrib><title>Hydroxyapatite formation from cuttlefish bones: kinetics</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Highly porous hydroxyapatite (Ca
10
(PO
4
)
6
·(OH)
2
, HA) was prepared through hydrothermal transformation of aragonitic cuttlefish bones (
Sepia officinalis
L. Adriatic Sea) in the temperature range from 140 to 220°C for 20 min to 48 h. The phase composition of converted hydroxyapatite was examined by quantitative X-ray diffraction (XRD) using Rietveld structure refinement and Fourier transform infrared spectroscopy (FTIR). Johnson–Mehl–Avrami (JMA) approach was used to follow the kinetics and mechanism of transformation. Diffusion controlled one dimensional growth of HA, predominantly along the
a
-axis, could be defined. FTIR spectroscopy determined B-type substitutions of CO
3
2−
groups. The morphology and microstructure of converted HA was examined by scanning electron microscopy. The general architecture of cuttlefish bones was preserved after hydrothermal treatment and the cuttlefish bones retained its form with the same channel size (~80 × 300 μm). The formation of dandelion-like HA spheres with diameter from 3 to 8 μm were observed on the surface of lamellae, which further transformed into various radially oriented nanoplates and nanorods with an average diameter of about 200–300 nm and an average length of about 8–10 μm.</description><subject>Animals</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - isolation & purification</subject><subject>Biological and medical sciences</subject><subject>Biological products</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Bone and Bones - chemistry</subject><subject>Bone and Bones - ultrastructure</subject><subject>Bones</subject><subject>Calcium Carbonate - chemistry</subject><subject>Calcium Carbonate - isolation & purification</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Decapodiformes - metabolism</subject><subject>Durapatite - chemical synthesis</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - isolation & purification</subject><subject>Glass</subject><subject>Hot Temperature</subject><subject>Kinetics</subject><subject>Materials Science</subject><subject>Medical sciences</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes - ultrastructure</subject><subject>Natural Materials</subject><subject>Polymer Sciences</subject><subject>Powder Diffraction</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Sepia officinalis</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surfaces and Interfaces</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Thin Films</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMotn78AC-yCOIpOtkkm6w3KWqFghc9h2ya6NbdTU12wf57U1otCJ5mYJ6ZeXkQOiNwTQDETSQgeYGBAGaEcMz20JhwQTGTVO6jMZRcYMYpjNBRjAsAYCXnh2iUAy-ElHyM5HQ1D_5rpZe6r3ubOR_a1Pkuc8G3mRn6vrGuju9Z5Tsbb7OPurN9beIJOnC6ifZ0W4_R68P9y2SKZ8-PT5O7GTaM5j2uRE4LoZlgFU9fK2kppLzWFZJVjDNjBLfccVtSQjXkxjg916WllWNSUkeP0dXm7jL4z8HGXrV1NLZpdGf9EJUsCGdEEkjkxR9y4YfQpXBKgmCUCVkmiGwgE3yMwTq1DHWrw0oRUGupaiNVpZBqLVWxtHO-PTxUrZ3_bvxYTMDlFtDR6MYF3Zk67jiaVBSEJC7fcDGNujcbdgn___4NGVmNrQ</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Ivankovic, H.</creator><creator>Tkalcec, E.</creator><creator>Orlic, S.</creator><creator>Gallego Ferrer, G.</creator><creator>Schauperl, Z.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7QP</scope></search><sort><creationdate>20101001</creationdate><title>Hydroxyapatite formation from cuttlefish bones: kinetics</title><author>Ivankovic, H. ; Tkalcec, E. ; Orlic, S. ; Gallego Ferrer, G. ; Schauperl, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-b72367a474b5205b8e30010ef684b454cc75e5f5e9313a02ccfada9e3bf4883f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - isolation & purification</topic><topic>Biological and medical sciences</topic><topic>Biological products</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Bone and Bones - chemistry</topic><topic>Bone and Bones - ultrastructure</topic><topic>Bones</topic><topic>Calcium Carbonate - chemistry</topic><topic>Calcium Carbonate - isolation & purification</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Decapodiformes - metabolism</topic><topic>Durapatite - chemical synthesis</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - isolation & purification</topic><topic>Glass</topic><topic>Hot Temperature</topic><topic>Kinetics</topic><topic>Materials Science</topic><topic>Medical sciences</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes - ultrastructure</topic><topic>Natural Materials</topic><topic>Polymer Sciences</topic><topic>Powder Diffraction</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Sepia officinalis</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surfaces and Interfaces</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivankovic, H.</creatorcontrib><creatorcontrib>Tkalcec, E.</creatorcontrib><creatorcontrib>Orlic, S.</creatorcontrib><creatorcontrib>Gallego Ferrer, G.</creatorcontrib><creatorcontrib>Schauperl, Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Calcium & Calcified Tissue Abstracts</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivankovic, H.</au><au>Tkalcec, E.</au><au>Orlic, S.</au><au>Gallego Ferrer, G.</au><au>Schauperl, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxyapatite formation from cuttlefish bones: kinetics</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>21</volume><issue>10</issue><spage>2711</spage><epage>2722</epage><pages>2711-2722</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Highly porous hydroxyapatite (Ca
10
(PO
4
)
6
·(OH)
2
, HA) was prepared through hydrothermal transformation of aragonitic cuttlefish bones (
Sepia officinalis
L. Adriatic Sea) in the temperature range from 140 to 220°C for 20 min to 48 h. The phase composition of converted hydroxyapatite was examined by quantitative X-ray diffraction (XRD) using Rietveld structure refinement and Fourier transform infrared spectroscopy (FTIR). Johnson–Mehl–Avrami (JMA) approach was used to follow the kinetics and mechanism of transformation. Diffusion controlled one dimensional growth of HA, predominantly along the
a
-axis, could be defined. FTIR spectroscopy determined B-type substitutions of CO
3
2−
groups. The morphology and microstructure of converted HA was examined by scanning electron microscopy. The general architecture of cuttlefish bones was preserved after hydrothermal treatment and the cuttlefish bones retained its form with the same channel size (~80 × 300 μm). The formation of dandelion-like HA spheres with diameter from 3 to 8 μm were observed on the surface of lamellae, which further transformed into various radially oriented nanoplates and nanorods with an average diameter of about 200–300 nm and an average length of about 8–10 μm.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>20567885</pmid><doi>10.1007/s10856-010-4115-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2010-10, Vol.21 (10), p.2711-2722 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_proquest_miscellaneous_861541810 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animals Biocompatible Materials - chemical synthesis Biocompatible Materials - chemistry Biocompatible Materials - isolation & purification Biological and medical sciences Biological products Biomaterials Biomedical Engineering and Bioengineering Biomedical materials Bone and Bones - chemistry Bone and Bones - ultrastructure Bones Calcium Carbonate - chemistry Calcium Carbonate - isolation & purification Ceramics Chemistry and Materials Science Composites Decapodiformes - metabolism Durapatite - chemical synthesis Durapatite - chemistry Durapatite - isolation & purification Glass Hot Temperature Kinetics Materials Science Medical sciences Microscopy, Electron, Scanning Nanostructures - chemistry Nanostructures - ultrastructure Nanotubes - chemistry Nanotubes - ultrastructure Natural Materials Polymer Sciences Powder Diffraction Regenerative Medicine/Tissue Engineering Sepia officinalis Spectroscopy, Fourier Transform Infrared Surfaces and Interfaces Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Thin Films |
title | Hydroxyapatite formation from cuttlefish bones: kinetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxyapatite%20formation%20from%20cuttlefish%20bones:%20kinetics&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Ivankovic,%20H.&rft.date=2010-10-01&rft.volume=21&rft.issue=10&rft.spage=2711&rft.epage=2722&rft.pages=2711-2722&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-010-4115-4&rft_dat=%3Cproquest_cross%3E861541810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=807434789&rft_id=info:pmid/20567885&rfr_iscdi=true |