Loading Rate Dependence of Tensile Strength Anisotropy of Barre Granite
Granitic rocks usually exhibit strongly anisotropy due to pre-existing microcracks induced by long-term geological loadings. The understanding of the rock anisotropy in mechanical properties is critical to a variety of rock engineering applications. In this paper, Brazilian tests are conducted stati...
Gespeichert in:
Veröffentlicht in: | Pure and applied geophysics 2010-11, Vol.167 (11), p.1419-1432 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1432 |
---|---|
container_issue | 11 |
container_start_page | 1419 |
container_title | Pure and applied geophysics |
container_volume | 167 |
creator | Dai, Feng Xia, Kaiwen |
description | Granitic rocks usually exhibit strongly anisotropy due to pre-existing microcracks induced by long-term geological loadings. The understanding of the rock anisotropy in mechanical properties is critical to a variety of rock engineering applications. In this paper, Brazilian tests are conducted statically with a material testing machine and dynamically with a split Hopkinson pressure bar system to measure both static and dynamic tensile strength of Barre granite. To understand the anisotropy in tensile strength, samples are cored and labelled using the three principle directions of Barre granite to form six sample groups. For dynamic tests, a pulse shaping technique is used to achieve dynamic equilibrium in the samples during the dynamic test. The finite element method is then implemented to formulate equations that relate the failure load to the material tensile strength by employing an orthotropic elastic material model. For samples in the same orientation group, the tensile strength shows clear loading rate dependence. The tensile strengths also exhibit clear anisotropy under static loading while the anisotropy diminishes as the loading rate increases, which may be due to the interaction of pre-existing microcracks. |
doi_str_mv | 10.1007/s00024-010-0103-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861540905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>861540905</sourcerecordid><originalsourceid>FETCH-LOGICAL-a400t-d7f70fef7b19104b6dd8b83c377783d69bdf2475b43ebd5864604866077784913</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG9FEE_VSZMm7XFddRUWBF3PIW0na5duWpPuYf-9KV0UBA-PObxvHjOPkEsKtxRA3nkASHgMFAaxmB2RCeUJxDll4phMABiLeZqyU3Lm_QaASpnmE7JYtrqq7Tp60z1GD9ihrdCWGLUmWqH1dYPRe-_QrvvPaGZr3_au7faDfa-dw2jhtK17PCcnRjceLw5zSj6eHlfz53j5uniZz5ax5gB9XEkjwaCRBc0p8EJUVVZkrGRSyoxVIi8qk3CZFpxhUaWZ4AJ4JgQMPg-_TMnNmNu59muHvlfb2pfYNNpiu_MqEzTlkEMayKs_5KbdORuOUxkISDPG8gDRESpd671DozpXb7XbKwpqKFaNxapQ6iCmWNi5PgRrX-rGhALK2v8sJiFX5pQHLhk5Hyy7Rvd7wP_h39OshUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>806058339</pqid></control><display><type>article</type><title>Loading Rate Dependence of Tensile Strength Anisotropy of Barre Granite</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dai, Feng ; Xia, Kaiwen</creator><creatorcontrib>Dai, Feng ; Xia, Kaiwen</creatorcontrib><description>Granitic rocks usually exhibit strongly anisotropy due to pre-existing microcracks induced by long-term geological loadings. The understanding of the rock anisotropy in mechanical properties is critical to a variety of rock engineering applications. In this paper, Brazilian tests are conducted statically with a material testing machine and dynamically with a split Hopkinson pressure bar system to measure both static and dynamic tensile strength of Barre granite. To understand the anisotropy in tensile strength, samples are cored and labelled using the three principle directions of Barre granite to form six sample groups. For dynamic tests, a pulse shaping technique is used to achieve dynamic equilibrium in the samples during the dynamic test. The finite element method is then implemented to formulate equations that relate the failure load to the material tensile strength by employing an orthotropic elastic material model. For samples in the same orientation group, the tensile strength shows clear loading rate dependence. The tensile strengths also exhibit clear anisotropy under static loading while the anisotropy diminishes as the loading rate increases, which may be due to the interaction of pre-existing microcracks.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-010-0103-3</identifier><identifier>CODEN: PAGYAV</identifier><language>eng</language><publisher>Basel: SP Birkhäuser Verlag Basel</publisher><subject>Anisotropy ; Applied geophysics ; Dynamical systems ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics/Geodesy ; Granite ; Internal geophysics ; Load distribution ; Loading rate ; Mathematical analysis ; Rocks ; Tensile strength</subject><ispartof>Pure and applied geophysics, 2010-11, Vol.167 (11), p.1419-1432</ispartof><rights>Birkhäuser / Springer Basel AG 2010</rights><rights>2015 INIST-CNRS</rights><rights>Springer Basel AG 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a400t-d7f70fef7b19104b6dd8b83c377783d69bdf2475b43ebd5864604866077784913</citedby><cites>FETCH-LOGICAL-a400t-d7f70fef7b19104b6dd8b83c377783d69bdf2475b43ebd5864604866077784913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-010-0103-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-010-0103-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23397914$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Feng</creatorcontrib><creatorcontrib>Xia, Kaiwen</creatorcontrib><title>Loading Rate Dependence of Tensile Strength Anisotropy of Barre Granite</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>Granitic rocks usually exhibit strongly anisotropy due to pre-existing microcracks induced by long-term geological loadings. The understanding of the rock anisotropy in mechanical properties is critical to a variety of rock engineering applications. In this paper, Brazilian tests are conducted statically with a material testing machine and dynamically with a split Hopkinson pressure bar system to measure both static and dynamic tensile strength of Barre granite. To understand the anisotropy in tensile strength, samples are cored and labelled using the three principle directions of Barre granite to form six sample groups. For dynamic tests, a pulse shaping technique is used to achieve dynamic equilibrium in the samples during the dynamic test. The finite element method is then implemented to formulate equations that relate the failure load to the material tensile strength by employing an orthotropic elastic material model. For samples in the same orientation group, the tensile strength shows clear loading rate dependence. The tensile strengths also exhibit clear anisotropy under static loading while the anisotropy diminishes as the loading rate increases, which may be due to the interaction of pre-existing microcracks.</description><subject>Anisotropy</subject><subject>Applied geophysics</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics/Geodesy</subject><subject>Granite</subject><subject>Internal geophysics</subject><subject>Load distribution</subject><subject>Loading rate</subject><subject>Mathematical analysis</subject><subject>Rocks</subject><subject>Tensile strength</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLxDAQhYMouK7-AG9FEE_VSZMm7XFddRUWBF3PIW0na5duWpPuYf-9KV0UBA-PObxvHjOPkEsKtxRA3nkASHgMFAaxmB2RCeUJxDll4phMABiLeZqyU3Lm_QaASpnmE7JYtrqq7Tp60z1GD9ihrdCWGLUmWqH1dYPRe-_QrvvPaGZr3_au7faDfa-dw2jhtK17PCcnRjceLw5zSj6eHlfz53j5uniZz5ax5gB9XEkjwaCRBc0p8EJUVVZkrGRSyoxVIi8qk3CZFpxhUaWZ4AJ4JgQMPg-_TMnNmNu59muHvlfb2pfYNNpiu_MqEzTlkEMayKs_5KbdORuOUxkISDPG8gDRESpd671DozpXb7XbKwpqKFaNxapQ6iCmWNi5PgRrX-rGhALK2v8sJiFX5pQHLhk5Hyy7Rvd7wP_h39OshUU</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Dai, Feng</creator><creator>Xia, Kaiwen</creator><general>SP Birkhäuser Verlag Basel</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20101101</creationdate><title>Loading Rate Dependence of Tensile Strength Anisotropy of Barre Granite</title><author>Dai, Feng ; Xia, Kaiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a400t-d7f70fef7b19104b6dd8b83c377783d69bdf2475b43ebd5864604866077784913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anisotropy</topic><topic>Applied geophysics</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics/Geodesy</topic><topic>Granite</topic><topic>Internal geophysics</topic><topic>Load distribution</topic><topic>Loading rate</topic><topic>Mathematical analysis</topic><topic>Rocks</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Feng</creatorcontrib><creatorcontrib>Xia, Kaiwen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Feng</au><au>Xia, Kaiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loading Rate Dependence of Tensile Strength Anisotropy of Barre Granite</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>167</volume><issue>11</issue><spage>1419</spage><epage>1432</epage><pages>1419-1432</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><coden>PAGYAV</coden><abstract>Granitic rocks usually exhibit strongly anisotropy due to pre-existing microcracks induced by long-term geological loadings. The understanding of the rock anisotropy in mechanical properties is critical to a variety of rock engineering applications. In this paper, Brazilian tests are conducted statically with a material testing machine and dynamically with a split Hopkinson pressure bar system to measure both static and dynamic tensile strength of Barre granite. To understand the anisotropy in tensile strength, samples are cored and labelled using the three principle directions of Barre granite to form six sample groups. For dynamic tests, a pulse shaping technique is used to achieve dynamic equilibrium in the samples during the dynamic test. The finite element method is then implemented to formulate equations that relate the failure load to the material tensile strength by employing an orthotropic elastic material model. For samples in the same orientation group, the tensile strength shows clear loading rate dependence. The tensile strengths also exhibit clear anisotropy under static loading while the anisotropy diminishes as the loading rate increases, which may be due to the interaction of pre-existing microcracks.</abstract><cop>Basel</cop><pub>SP Birkhäuser Verlag Basel</pub><doi>10.1007/s00024-010-0103-3</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-4553 |
ispartof | Pure and applied geophysics, 2010-11, Vol.167 (11), p.1419-1432 |
issn | 0033-4553 1420-9136 |
language | eng |
recordid | cdi_proquest_miscellaneous_861540905 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Applied geophysics Dynamical systems Dynamics Earth and Environmental Science Earth Sciences Earth, ocean, space Exact sciences and technology Geophysics/Geodesy Granite Internal geophysics Load distribution Loading rate Mathematical analysis Rocks Tensile strength |
title | Loading Rate Dependence of Tensile Strength Anisotropy of Barre Granite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loading%20Rate%20Dependence%20of%20Tensile%20Strength%20Anisotropy%20of%20Barre%20Granite&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Dai,%20Feng&rft.date=2010-11-01&rft.volume=167&rft.issue=11&rft.spage=1419&rft.epage=1432&rft.pages=1419-1432&rft.issn=0033-4553&rft.eissn=1420-9136&rft.coden=PAGYAV&rft_id=info:doi/10.1007/s00024-010-0103-3&rft_dat=%3Cproquest_cross%3E861540905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=806058339&rft_id=info:pmid/&rfr_iscdi=true |