Correcting Deletions Using Linear and Cyclic Codes
Linear and cyclic codes are typically used to combat substitution errors. However, synchronization errors, associated with the deletion and insertion of symbols, can cause severe performance degradation unless the coding scheme possesses the capability to recover from such errors. It is shown that l...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2010-10, Vol.56 (10), p.5223-5234 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5234 |
---|---|
container_issue | 10 |
container_start_page | 5223 |
container_title | IEEE transactions on information theory |
container_volume | 56 |
creator | Abdel-Ghaffar, K A S Ferreira, H C Ling Cheng |
description | Linear and cyclic codes are typically used to combat substitution errors. However, synchronization errors, associated with the deletion and insertion of symbols, can cause severe performance degradation unless the coding scheme possesses the capability to recover from such errors. It is shown that linear codes of rate greater than 1/2 cannot correct deletion or insertion errors but there are linear codes of rate 1/2 that can correct these errors. Although cyclic codes, except for repetition codes, cannot correct deletion or insertion errors, two approaches are investigated to yield codes, based on cyclic codes, that can correct these errors. In the first approach, it is shown that a binary or nonbinary cyclic code of rate at most 1/3 or 1/2, respectively, can be extended by one symbol to make it capable of correcting synchronization errors. In the second approach, a cyclic code of rate at most 1/2 is expurgated by appropriately deleting codewords such that the expurgated code is capable of correcting synchronization errors. It is shown that deleting codewords costs at most two information bits if the code is binary and one information symbol if the code is nonbinary. |
doi_str_mv | 10.1109/TIT.2010.2059790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_861540788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5571879</ieee_id><sourcerecordid>2144879441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-26ec2a36aafe27e17c0df990c8c8d3edf727e57083cb7eae5e0e0610cca401d23</originalsourceid><addsrcrecordid>eNpdkD1rwzAQhkVpoWnavdDFFEonpydZsqSxOP0IBLoks1Dlc1Fw7FRyhvz7yiRk6HS8d88dx0PIPYUZpaBfVovVjEFKDISWGi7IhAohc10KfkkmAFTlmnN1TW5i3KTIBWUTwqo-BHSD736yObY4-L6L2TqOeek7tCGzXZ1VB9d6l1V9jfGWXDW2jXh3qlOyfn9bVZ_58utjUb0uc8epGnJWomO2KK1tkEmk0kHdaA1OOVUXWDcydYUEVbhviRYFAkJJwTnLgdasmJLn491d6H_3GAez9dFh29oO-300qqSCg1QqkY__yE2_D116zkjBBHBJeYLgCLnQxxiwMbvgtzYcDAUzKjRJoRkVmpPCtPJ0umujs20TbOd8PO-xgpVcFuOnD0fOI-J5nOxTJXXxBxgAeDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>752504714</pqid></control><display><type>article</type><title>Correcting Deletions Using Linear and Cyclic Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Abdel-Ghaffar, K A S ; Ferreira, H C ; Ling Cheng</creator><creatorcontrib>Abdel-Ghaffar, K A S ; Ferreira, H C ; Ling Cheng</creatorcontrib><description>Linear and cyclic codes are typically used to combat substitution errors. However, synchronization errors, associated with the deletion and insertion of symbols, can cause severe performance degradation unless the coding scheme possesses the capability to recover from such errors. It is shown that linear codes of rate greater than 1/2 cannot correct deletion or insertion errors but there are linear codes of rate 1/2 that can correct these errors. Although cyclic codes, except for repetition codes, cannot correct deletion or insertion errors, two approaches are investigated to yield codes, based on cyclic codes, that can correct these errors. In the first approach, it is shown that a binary or nonbinary cyclic code of rate at most 1/3 or 1/2, respectively, can be extended by one symbol to make it capable of correcting synchronization errors. In the second approach, a cyclic code of rate at most 1/2 is expurgated by appropriately deleting codewords such that the expurgated code is capable of correcting synchronization errors. It is shown that deleting codewords costs at most two information bits if the code is binary and one information symbol if the code is nonbinary.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2010.2059790</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Codes ; Coding, codes ; Construction industry ; Cyclic code ; Decoding ; Deletion ; Error analysis ; Error correction ; Errors ; Exact sciences and technology ; expurgated code ; extended code ; Information ; Information theory ; Information, signal and communications theory ; Insertion ; Linear code ; Signal and communications theory ; substitution error ; Symbols ; Synchronism ; Synchronization ; synchronization error ; Telecommunications and information theory ; Vectors</subject><ispartof>IEEE transactions on information theory, 2010-10, Vol.56 (10), p.5223-5234</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-26ec2a36aafe27e17c0df990c8c8d3edf727e57083cb7eae5e0e0610cca401d23</citedby><cites>FETCH-LOGICAL-c418t-26ec2a36aafe27e17c0df990c8c8d3edf727e57083cb7eae5e0e0610cca401d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5571879$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5571879$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23264732$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdel-Ghaffar, K A S</creatorcontrib><creatorcontrib>Ferreira, H C</creatorcontrib><creatorcontrib>Ling Cheng</creatorcontrib><title>Correcting Deletions Using Linear and Cyclic Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Linear and cyclic codes are typically used to combat substitution errors. However, synchronization errors, associated with the deletion and insertion of symbols, can cause severe performance degradation unless the coding scheme possesses the capability to recover from such errors. It is shown that linear codes of rate greater than 1/2 cannot correct deletion or insertion errors but there are linear codes of rate 1/2 that can correct these errors. Although cyclic codes, except for repetition codes, cannot correct deletion or insertion errors, two approaches are investigated to yield codes, based on cyclic codes, that can correct these errors. In the first approach, it is shown that a binary or nonbinary cyclic code of rate at most 1/3 or 1/2, respectively, can be extended by one symbol to make it capable of correcting synchronization errors. In the second approach, a cyclic code of rate at most 1/2 is expurgated by appropriately deleting codewords such that the expurgated code is capable of correcting synchronization errors. It is shown that deleting codewords costs at most two information bits if the code is binary and one information symbol if the code is nonbinary.</description><subject>Applied sciences</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Construction industry</subject><subject>Cyclic code</subject><subject>Decoding</subject><subject>Deletion</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>expurgated code</subject><subject>extended code</subject><subject>Information</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Insertion</subject><subject>Linear code</subject><subject>Signal and communications theory</subject><subject>substitution error</subject><subject>Symbols</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>synchronization error</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1rwzAQhkVpoWnavdDFFEonpydZsqSxOP0IBLoks1Dlc1Fw7FRyhvz7yiRk6HS8d88dx0PIPYUZpaBfVovVjEFKDISWGi7IhAohc10KfkkmAFTlmnN1TW5i3KTIBWUTwqo-BHSD736yObY4-L6L2TqOeek7tCGzXZ1VB9d6l1V9jfGWXDW2jXh3qlOyfn9bVZ_58utjUb0uc8epGnJWomO2KK1tkEmk0kHdaA1OOVUXWDcydYUEVbhviRYFAkJJwTnLgdasmJLn491d6H_3GAez9dFh29oO-300qqSCg1QqkY__yE2_D116zkjBBHBJeYLgCLnQxxiwMbvgtzYcDAUzKjRJoRkVmpPCtPJ0umujs20TbOd8PO-xgpVcFuOnD0fOI-J5nOxTJXXxBxgAeDU</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Abdel-Ghaffar, K A S</creator><creator>Ferreira, H C</creator><creator>Ling Cheng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20101001</creationdate><title>Correcting Deletions Using Linear and Cyclic Codes</title><author>Abdel-Ghaffar, K A S ; Ferreira, H C ; Ling Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-26ec2a36aafe27e17c0df990c8c8d3edf727e57083cb7eae5e0e0610cca401d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Construction industry</topic><topic>Cyclic code</topic><topic>Decoding</topic><topic>Deletion</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>expurgated code</topic><topic>extended code</topic><topic>Information</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Insertion</topic><topic>Linear code</topic><topic>Signal and communications theory</topic><topic>substitution error</topic><topic>Symbols</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>synchronization error</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdel-Ghaffar, K A S</creatorcontrib><creatorcontrib>Ferreira, H C</creatorcontrib><creatorcontrib>Ling Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abdel-Ghaffar, K A S</au><au>Ferreira, H C</au><au>Ling Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correcting Deletions Using Linear and Cyclic Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>56</volume><issue>10</issue><spage>5223</spage><epage>5234</epage><pages>5223-5234</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Linear and cyclic codes are typically used to combat substitution errors. However, synchronization errors, associated with the deletion and insertion of symbols, can cause severe performance degradation unless the coding scheme possesses the capability to recover from such errors. It is shown that linear codes of rate greater than 1/2 cannot correct deletion or insertion errors but there are linear codes of rate 1/2 that can correct these errors. Although cyclic codes, except for repetition codes, cannot correct deletion or insertion errors, two approaches are investigated to yield codes, based on cyclic codes, that can correct these errors. In the first approach, it is shown that a binary or nonbinary cyclic code of rate at most 1/3 or 1/2, respectively, can be extended by one symbol to make it capable of correcting synchronization errors. In the second approach, a cyclic code of rate at most 1/2 is expurgated by appropriately deleting codewords such that the expurgated code is capable of correcting synchronization errors. It is shown that deleting codewords costs at most two information bits if the code is binary and one information symbol if the code is nonbinary.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2010.2059790</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2010-10, Vol.56 (10), p.5223-5234 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_miscellaneous_861540788 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Codes Coding, codes Construction industry Cyclic code Decoding Deletion Error analysis Error correction Errors Exact sciences and technology expurgated code extended code Information Information theory Information, signal and communications theory Insertion Linear code Signal and communications theory substitution error Symbols Synchronism Synchronization synchronization error Telecommunications and information theory Vectors |
title | Correcting Deletions Using Linear and Cyclic Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correcting%20Deletions%20Using%20Linear%20and%20Cyclic%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Abdel-Ghaffar,%20K%20A%20S&rft.date=2010-10-01&rft.volume=56&rft.issue=10&rft.spage=5223&rft.epage=5234&rft.pages=5223-5234&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2010.2059790&rft_dat=%3Cproquest_RIE%3E2144879441%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=752504714&rft_id=info:pmid/&rft_ieee_id=5571879&rfr_iscdi=true |