Correcting Deletions Using Linear and Cyclic Codes

Linear and cyclic codes are typically used to combat substitution errors. However, synchronization errors, associated with the deletion and insertion of symbols, can cause severe performance degradation unless the coding scheme possesses the capability to recover from such errors. It is shown that l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2010-10, Vol.56 (10), p.5223-5234
Hauptverfasser: Abdel-Ghaffar, K A S, Ferreira, H C, Ling Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5234
container_issue 10
container_start_page 5223
container_title IEEE transactions on information theory
container_volume 56
creator Abdel-Ghaffar, K A S
Ferreira, H C
Ling Cheng
description Linear and cyclic codes are typically used to combat substitution errors. However, synchronization errors, associated with the deletion and insertion of symbols, can cause severe performance degradation unless the coding scheme possesses the capability to recover from such errors. It is shown that linear codes of rate greater than 1/2 cannot correct deletion or insertion errors but there are linear codes of rate 1/2 that can correct these errors. Although cyclic codes, except for repetition codes, cannot correct deletion or insertion errors, two approaches are investigated to yield codes, based on cyclic codes, that can correct these errors. In the first approach, it is shown that a binary or nonbinary cyclic code of rate at most 1/3 or 1/2, respectively, can be extended by one symbol to make it capable of correcting synchronization errors. In the second approach, a cyclic code of rate at most 1/2 is expurgated by appropriately deleting codewords such that the expurgated code is capable of correcting synchronization errors. It is shown that deleting codewords costs at most two information bits if the code is binary and one information symbol if the code is nonbinary.
doi_str_mv 10.1109/TIT.2010.2059790
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_861540788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5571879</ieee_id><sourcerecordid>2144879441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-26ec2a36aafe27e17c0df990c8c8d3edf727e57083cb7eae5e0e0610cca401d23</originalsourceid><addsrcrecordid>eNpdkD1rwzAQhkVpoWnavdDFFEonpydZsqSxOP0IBLoks1Dlc1Fw7FRyhvz7yiRk6HS8d88dx0PIPYUZpaBfVovVjEFKDISWGi7IhAohc10KfkkmAFTlmnN1TW5i3KTIBWUTwqo-BHSD736yObY4-L6L2TqOeek7tCGzXZ1VB9d6l1V9jfGWXDW2jXh3qlOyfn9bVZ_58utjUb0uc8epGnJWomO2KK1tkEmk0kHdaA1OOVUXWDcydYUEVbhviRYFAkJJwTnLgdasmJLn491d6H_3GAez9dFh29oO-300qqSCg1QqkY__yE2_D116zkjBBHBJeYLgCLnQxxiwMbvgtzYcDAUzKjRJoRkVmpPCtPJ0umujs20TbOd8PO-xgpVcFuOnD0fOI-J5nOxTJXXxBxgAeDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>752504714</pqid></control><display><type>article</type><title>Correcting Deletions Using Linear and Cyclic Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Abdel-Ghaffar, K A S ; Ferreira, H C ; Ling Cheng</creator><creatorcontrib>Abdel-Ghaffar, K A S ; Ferreira, H C ; Ling Cheng</creatorcontrib><description>Linear and cyclic codes are typically used to combat substitution errors. However, synchronization errors, associated with the deletion and insertion of symbols, can cause severe performance degradation unless the coding scheme possesses the capability to recover from such errors. It is shown that linear codes of rate greater than 1/2 cannot correct deletion or insertion errors but there are linear codes of rate 1/2 that can correct these errors. Although cyclic codes, except for repetition codes, cannot correct deletion or insertion errors, two approaches are investigated to yield codes, based on cyclic codes, that can correct these errors. In the first approach, it is shown that a binary or nonbinary cyclic code of rate at most 1/3 or 1/2, respectively, can be extended by one symbol to make it capable of correcting synchronization errors. In the second approach, a cyclic code of rate at most 1/2 is expurgated by appropriately deleting codewords such that the expurgated code is capable of correcting synchronization errors. It is shown that deleting codewords costs at most two information bits if the code is binary and one information symbol if the code is nonbinary.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2010.2059790</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Codes ; Coding, codes ; Construction industry ; Cyclic code ; Decoding ; Deletion ; Error analysis ; Error correction ; Errors ; Exact sciences and technology ; expurgated code ; extended code ; Information ; Information theory ; Information, signal and communications theory ; Insertion ; Linear code ; Signal and communications theory ; substitution error ; Symbols ; Synchronism ; Synchronization ; synchronization error ; Telecommunications and information theory ; Vectors</subject><ispartof>IEEE transactions on information theory, 2010-10, Vol.56 (10), p.5223-5234</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-26ec2a36aafe27e17c0df990c8c8d3edf727e57083cb7eae5e0e0610cca401d23</citedby><cites>FETCH-LOGICAL-c418t-26ec2a36aafe27e17c0df990c8c8d3edf727e57083cb7eae5e0e0610cca401d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5571879$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5571879$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23264732$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdel-Ghaffar, K A S</creatorcontrib><creatorcontrib>Ferreira, H C</creatorcontrib><creatorcontrib>Ling Cheng</creatorcontrib><title>Correcting Deletions Using Linear and Cyclic Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Linear and cyclic codes are typically used to combat substitution errors. However, synchronization errors, associated with the deletion and insertion of symbols, can cause severe performance degradation unless the coding scheme possesses the capability to recover from such errors. It is shown that linear codes of rate greater than 1/2 cannot correct deletion or insertion errors but there are linear codes of rate 1/2 that can correct these errors. Although cyclic codes, except for repetition codes, cannot correct deletion or insertion errors, two approaches are investigated to yield codes, based on cyclic codes, that can correct these errors. In the first approach, it is shown that a binary or nonbinary cyclic code of rate at most 1/3 or 1/2, respectively, can be extended by one symbol to make it capable of correcting synchronization errors. In the second approach, a cyclic code of rate at most 1/2 is expurgated by appropriately deleting codewords such that the expurgated code is capable of correcting synchronization errors. It is shown that deleting codewords costs at most two information bits if the code is binary and one information symbol if the code is nonbinary.</description><subject>Applied sciences</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Construction industry</subject><subject>Cyclic code</subject><subject>Decoding</subject><subject>Deletion</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>expurgated code</subject><subject>extended code</subject><subject>Information</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Insertion</subject><subject>Linear code</subject><subject>Signal and communications theory</subject><subject>substitution error</subject><subject>Symbols</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>synchronization error</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1rwzAQhkVpoWnavdDFFEonpydZsqSxOP0IBLoks1Dlc1Fw7FRyhvz7yiRk6HS8d88dx0PIPYUZpaBfVovVjEFKDISWGi7IhAohc10KfkkmAFTlmnN1TW5i3KTIBWUTwqo-BHSD736yObY4-L6L2TqOeek7tCGzXZ1VB9d6l1V9jfGWXDW2jXh3qlOyfn9bVZ_58utjUb0uc8epGnJWomO2KK1tkEmk0kHdaA1OOVUXWDcydYUEVbhviRYFAkJJwTnLgdasmJLn491d6H_3GAez9dFh29oO-300qqSCg1QqkY__yE2_D116zkjBBHBJeYLgCLnQxxiwMbvgtzYcDAUzKjRJoRkVmpPCtPJ0umujs20TbOd8PO-xgpVcFuOnD0fOI-J5nOxTJXXxBxgAeDU</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Abdel-Ghaffar, K A S</creator><creator>Ferreira, H C</creator><creator>Ling Cheng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20101001</creationdate><title>Correcting Deletions Using Linear and Cyclic Codes</title><author>Abdel-Ghaffar, K A S ; Ferreira, H C ; Ling Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-26ec2a36aafe27e17c0df990c8c8d3edf727e57083cb7eae5e0e0610cca401d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Construction industry</topic><topic>Cyclic code</topic><topic>Decoding</topic><topic>Deletion</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>expurgated code</topic><topic>extended code</topic><topic>Information</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Insertion</topic><topic>Linear code</topic><topic>Signal and communications theory</topic><topic>substitution error</topic><topic>Symbols</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>synchronization error</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdel-Ghaffar, K A S</creatorcontrib><creatorcontrib>Ferreira, H C</creatorcontrib><creatorcontrib>Ling Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abdel-Ghaffar, K A S</au><au>Ferreira, H C</au><au>Ling Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correcting Deletions Using Linear and Cyclic Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>56</volume><issue>10</issue><spage>5223</spage><epage>5234</epage><pages>5223-5234</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Linear and cyclic codes are typically used to combat substitution errors. However, synchronization errors, associated with the deletion and insertion of symbols, can cause severe performance degradation unless the coding scheme possesses the capability to recover from such errors. It is shown that linear codes of rate greater than 1/2 cannot correct deletion or insertion errors but there are linear codes of rate 1/2 that can correct these errors. Although cyclic codes, except for repetition codes, cannot correct deletion or insertion errors, two approaches are investigated to yield codes, based on cyclic codes, that can correct these errors. In the first approach, it is shown that a binary or nonbinary cyclic code of rate at most 1/3 or 1/2, respectively, can be extended by one symbol to make it capable of correcting synchronization errors. In the second approach, a cyclic code of rate at most 1/2 is expurgated by appropriately deleting codewords such that the expurgated code is capable of correcting synchronization errors. It is shown that deleting codewords costs at most two information bits if the code is binary and one information symbol if the code is nonbinary.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2010.2059790</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2010-10, Vol.56 (10), p.5223-5234
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_861540788
source IEEE Electronic Library (IEL)
subjects Applied sciences
Codes
Coding, codes
Construction industry
Cyclic code
Decoding
Deletion
Error analysis
Error correction
Errors
Exact sciences and technology
expurgated code
extended code
Information
Information theory
Information, signal and communications theory
Insertion
Linear code
Signal and communications theory
substitution error
Symbols
Synchronism
Synchronization
synchronization error
Telecommunications and information theory
Vectors
title Correcting Deletions Using Linear and Cyclic Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correcting%20Deletions%20Using%20Linear%20and%20Cyclic%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Abdel-Ghaffar,%20K%20A%20S&rft.date=2010-10-01&rft.volume=56&rft.issue=10&rft.spage=5223&rft.epage=5234&rft.pages=5223-5234&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2010.2059790&rft_dat=%3Cproquest_RIE%3E2144879441%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=752504714&rft_id=info:pmid/&rft_ieee_id=5571879&rfr_iscdi=true