Thermoplastic vibration welding: Review of process phenomenology and processing-structure-property interrelationships

Vibration welding offers a robust method for physically joining thermoplastics to fabricate complex hollow assemblies from simpler injection‐molded articles without using an external heat source, adhesives, or mechanical fasteners. Vibration welding involves a complex interplay of several phenomena—...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2011-01, Vol.51 (1), p.1-22
Hauptverfasser: Patham, Bhaskar, Foss, Peter H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 1
container_title Polymer engineering and science
container_volume 51
creator Patham, Bhaskar
Foss, Peter H.
description Vibration welding offers a robust method for physically joining thermoplastics to fabricate complex hollow assemblies from simpler injection‐molded articles without using an external heat source, adhesives, or mechanical fasteners. Vibration welding involves a complex interplay of several phenomena—solid (Coulomb) friction, melting, high strain‐rate, pressure‐driven, strong (high‐strain) melt flows, solidification, and microstructure development—which ultimately govern the strength and integrity of the weld. Defects in the weld region may lead to catastrophic failure of the welded assembly. In this article, the current understanding of the processing–structure–property relationships in the context of vibration welding of thermoplastics and polymer‐matrix composites is reviewed. Experimental as well as analytical methods of investigation of the vibration welding process phenomenology are presented. The interrelationships between the microstructure in the weld region and the resulting weld strength and fatigue behavior are then discussed in the light of this phenomenological information for neat polymers, filled polymers, polymer blends, and foams. This review is also aimed at identifying the areas requiring further investigation with regard to understanding vibration welding phenomenology and weld structure–property relationships. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers
doi_str_mv 10.1002/pen.21784
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_861540670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A246836077</galeid><sourcerecordid>A246836077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5724-9950c302a344ff17f015a07a0951f1d62d22ea7fe95de2aa762db2c0ebcbafea3</originalsourceid><addsrcrecordid>eNp1kmFv0zAQhiMEEmXwgX8QgRBCIp1jJ7G7b1M1xsQ0YBvaR8t1zqlH6gTbWem_59Z2E0VFlmX5_Lyv7s6XJK9zMs4JoYc9uDHNuSieJKO8LERGK1Y8TUaEMJoxIcTz5EUItwRZVk5GyXA9B7_o-laFaHV6Z2deRdu5dAltbV1zlF7CnYVl2pm0952GENJ-Dq5b4G67ZpUqVz-8IJ-F6AcdBw8ZBnvwcZVaF8F7aNfGYW778DJ5ZlQb4NX2PEh-fDq5nn7Ozr-enk2PzzNdclpkk0lJNCNUsaIwJueG5KUiXJFJmZu8rmhNKShuYFLWQJXiGJlRTWCmZ8qAYgfJ-40v5vJrgBDlwgYNbascdEOQosIekYoTJN_8Q952g3eYnBQFEdgvUSD0dgM1qgVpnemiV_reUh7TohKsIpwjle2hGnDgVds5MBbDO_x4D4-rhoXVewUfdgTIRPgdGzWEIM-uLnfZj3-xswH_aP1RwTbzGDaSfdbadyF4MLL3dqH8SuZE3g-YxAGT6wFD9t22ZSpo1RqvnLbhUUCZwPnLS-QON9wS61j931B-O7l4cN520AYs7FGh_E9ZccZLeXNxKovp95svBC9X7A-yeO5-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>840800084</pqid></control><display><type>article</type><title>Thermoplastic vibration welding: Review of process phenomenology and processing-structure-property interrelationships</title><source>Wiley Journals</source><creator>Patham, Bhaskar ; Foss, Peter H.</creator><creatorcontrib>Patham, Bhaskar ; Foss, Peter H.</creatorcontrib><description>Vibration welding offers a robust method for physically joining thermoplastics to fabricate complex hollow assemblies from simpler injection‐molded articles without using an external heat source, adhesives, or mechanical fasteners. Vibration welding involves a complex interplay of several phenomena—solid (Coulomb) friction, melting, high strain‐rate, pressure‐driven, strong (high‐strain) melt flows, solidification, and microstructure development—which ultimately govern the strength and integrity of the weld. Defects in the weld region may lead to catastrophic failure of the welded assembly. In this article, the current understanding of the processing–structure–property relationships in the context of vibration welding of thermoplastics and polymer‐matrix composites is reviewed. Experimental as well as analytical methods of investigation of the vibration welding process phenomenology are presented. The interrelationships between the microstructure in the weld region and the resulting weld strength and fatigue behavior are then discussed in the light of this phenomenological information for neat polymers, filled polymers, polymer blends, and foams. This review is also aimed at identifying the areas requiring further investigation with regard to understanding vibration welding phenomenology and weld structure–property relationships. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.21784</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Assemblies ; Bonding and welding ; Cellular ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Friction welding ; Injection molding ; Joint strength ; Machinery and processing ; Materials fatigue ; Methods ; Microstructure ; Phenomenology ; Plastics ; Polymer blends ; Polymer industry, paints, wood ; Polymer matrix composites ; Production processes ; Technology application ; Technology of polymers ; Thermoplastic resins ; Thermoplastics ; Vibration ; Vibration welding ; Welded joints ; Welding</subject><ispartof>Polymer engineering and science, 2011-01, Vol.51 (1), p.1-22</ispartof><rights>Copyright © 2010 Society of Plastics Engineers</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Society of Plastics Engineers, Inc.</rights><rights>Copyright Society of Plastics Engineers Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5724-9950c302a344ff17f015a07a0951f1d62d22ea7fe95de2aa762db2c0ebcbafea3</citedby><cites>FETCH-LOGICAL-c5724-9950c302a344ff17f015a07a0951f1d62d22ea7fe95de2aa762db2c0ebcbafea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.21784$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.21784$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4024,27923,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23854815$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Patham, Bhaskar</creatorcontrib><creatorcontrib>Foss, Peter H.</creatorcontrib><title>Thermoplastic vibration welding: Review of process phenomenology and processing-structure-property interrelationships</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>Vibration welding offers a robust method for physically joining thermoplastics to fabricate complex hollow assemblies from simpler injection‐molded articles without using an external heat source, adhesives, or mechanical fasteners. Vibration welding involves a complex interplay of several phenomena—solid (Coulomb) friction, melting, high strain‐rate, pressure‐driven, strong (high‐strain) melt flows, solidification, and microstructure development—which ultimately govern the strength and integrity of the weld. Defects in the weld region may lead to catastrophic failure of the welded assembly. In this article, the current understanding of the processing–structure–property relationships in the context of vibration welding of thermoplastics and polymer‐matrix composites is reviewed. Experimental as well as analytical methods of investigation of the vibration welding process phenomenology are presented. The interrelationships between the microstructure in the weld region and the resulting weld strength and fatigue behavior are then discussed in the light of this phenomenological information for neat polymers, filled polymers, polymer blends, and foams. This review is also aimed at identifying the areas requiring further investigation with regard to understanding vibration welding phenomenology and weld structure–property relationships. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Assemblies</subject><subject>Bonding and welding</subject><subject>Cellular</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Friction welding</subject><subject>Injection molding</subject><subject>Joint strength</subject><subject>Machinery and processing</subject><subject>Materials fatigue</subject><subject>Methods</subject><subject>Microstructure</subject><subject>Phenomenology</subject><subject>Plastics</subject><subject>Polymer blends</subject><subject>Polymer industry, paints, wood</subject><subject>Polymer matrix composites</subject><subject>Production processes</subject><subject>Technology application</subject><subject>Technology of polymers</subject><subject>Thermoplastic resins</subject><subject>Thermoplastics</subject><subject>Vibration</subject><subject>Vibration welding</subject><subject>Welded joints</subject><subject>Welding</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kmFv0zAQhiMEEmXwgX8QgRBCIp1jJ7G7b1M1xsQ0YBvaR8t1zqlH6gTbWem_59Z2E0VFlmX5_Lyv7s6XJK9zMs4JoYc9uDHNuSieJKO8LERGK1Y8TUaEMJoxIcTz5EUItwRZVk5GyXA9B7_o-laFaHV6Z2deRdu5dAltbV1zlF7CnYVl2pm0952GENJ-Dq5b4G67ZpUqVz-8IJ-F6AcdBw8ZBnvwcZVaF8F7aNfGYW778DJ5ZlQb4NX2PEh-fDq5nn7Ozr-enk2PzzNdclpkk0lJNCNUsaIwJueG5KUiXJFJmZu8rmhNKShuYFLWQJXiGJlRTWCmZ8qAYgfJ-40v5vJrgBDlwgYNbascdEOQosIekYoTJN_8Q952g3eYnBQFEdgvUSD0dgM1qgVpnemiV_reUh7TohKsIpwjle2hGnDgVds5MBbDO_x4D4-rhoXVewUfdgTIRPgdGzWEIM-uLnfZj3-xswH_aP1RwTbzGDaSfdbadyF4MLL3dqH8SuZE3g-YxAGT6wFD9t22ZSpo1RqvnLbhUUCZwPnLS-QON9wS61j931B-O7l4cN520AYs7FGh_E9ZccZLeXNxKovp95svBC9X7A-yeO5-</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Patham, Bhaskar</creator><creator>Foss, Peter H.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201101</creationdate><title>Thermoplastic vibration welding: Review of process phenomenology and processing-structure-property interrelationships</title><author>Patham, Bhaskar ; Foss, Peter H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5724-9950c302a344ff17f015a07a0951f1d62d22ea7fe95de2aa762db2c0ebcbafea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Assemblies</topic><topic>Bonding and welding</topic><topic>Cellular</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Friction welding</topic><topic>Injection molding</topic><topic>Joint strength</topic><topic>Machinery and processing</topic><topic>Materials fatigue</topic><topic>Methods</topic><topic>Microstructure</topic><topic>Phenomenology</topic><topic>Plastics</topic><topic>Polymer blends</topic><topic>Polymer industry, paints, wood</topic><topic>Polymer matrix composites</topic><topic>Production processes</topic><topic>Technology application</topic><topic>Technology of polymers</topic><topic>Thermoplastic resins</topic><topic>Thermoplastics</topic><topic>Vibration</topic><topic>Vibration welding</topic><topic>Welded joints</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patham, Bhaskar</creatorcontrib><creatorcontrib>Foss, Peter H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patham, Bhaskar</au><au>Foss, Peter H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoplastic vibration welding: Review of process phenomenology and processing-structure-property interrelationships</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2011-01</date><risdate>2011</risdate><volume>51</volume><issue>1</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>Vibration welding offers a robust method for physically joining thermoplastics to fabricate complex hollow assemblies from simpler injection‐molded articles without using an external heat source, adhesives, or mechanical fasteners. Vibration welding involves a complex interplay of several phenomena—solid (Coulomb) friction, melting, high strain‐rate, pressure‐driven, strong (high‐strain) melt flows, solidification, and microstructure development—which ultimately govern the strength and integrity of the weld. Defects in the weld region may lead to catastrophic failure of the welded assembly. In this article, the current understanding of the processing–structure–property relationships in the context of vibration welding of thermoplastics and polymer‐matrix composites is reviewed. Experimental as well as analytical methods of investigation of the vibration welding process phenomenology are presented. The interrelationships between the microstructure in the weld region and the resulting weld strength and fatigue behavior are then discussed in the light of this phenomenological information for neat polymers, filled polymers, polymer blends, and foams. This review is also aimed at identifying the areas requiring further investigation with regard to understanding vibration welding phenomenology and weld structure–property relationships. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.21784</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2011-01, Vol.51 (1), p.1-22
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_miscellaneous_861540670
source Wiley Journals
subjects Applied sciences
Assemblies
Bonding and welding
Cellular
Composites
Exact sciences and technology
Forms of application and semi-finished materials
Friction welding
Injection molding
Joint strength
Machinery and processing
Materials fatigue
Methods
Microstructure
Phenomenology
Plastics
Polymer blends
Polymer industry, paints, wood
Polymer matrix composites
Production processes
Technology application
Technology of polymers
Thermoplastic resins
Thermoplastics
Vibration
Vibration welding
Welded joints
Welding
title Thermoplastic vibration welding: Review of process phenomenology and processing-structure-property interrelationships
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoplastic%20vibration%20welding:%20Review%20of%20process%20phenomenology%20and%20processing-structure-property%20interrelationships&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Patham,%20Bhaskar&rft.date=2011-01&rft.volume=51&rft.issue=1&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.21784&rft_dat=%3Cgale_proqu%3EA246836077%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=840800084&rft_id=info:pmid/&rft_galeid=A246836077&rfr_iscdi=true