Convenient system of FEM test functions for computational fluid dynamics

For the development of finite element schemes, a fundamentally new system of test functions defined on a finite element that is a convex quadrilateral is proposed. Due to the remarkable properties of the system (specifically, mutual orthogonality), the resulting matrices can be simplified and the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2010-11, Vol.50 (11), p.1859-1870
Hauptverfasser: Zakiev, S. E., Kholpanov, L. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1870
container_issue 11
container_start_page 1859
container_title Computational mathematics and mathematical physics
container_volume 50
creator Zakiev, S. E.
Kholpanov, L. P.
description For the development of finite element schemes, a fundamentally new system of test functions defined on a finite element that is a convex quadrilateral is proposed. Due to the remarkable properties of the system (specifically, mutual orthogonality), the resulting matrices can be simplified and the corresponding construction procedures can be made more transparent, especially for problems in computational fluid dynamics. Thus, the system of test functions may play an important role in finite element methods as applied to two-dimensional problems.
doi_str_mv 10.1134/S0965542510110102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861538689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>861538689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-529b264ad71f8279393c087bf84b0b5e7a870ae5107d321d5bdc4957c92e1b823</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG_Bi6dqJmn-HWXZdQXFg3ouaZpIlzZZm1bYb2-WFQRFGBiY-b3Hm0HoEsgNACtvX4gWnJeUA4FchB6hGXDOCyEEPUaz_brY70_RWUobQkBoxWZovYjh04XWhRGnXRpdj6PHq-UTHl0asZ-CHdsYEvZxwDb222k0-4HpsO-mtsHNLpi-tekcnXjTJXfx3efobbV8XayLx-f7h8XdY2FZKceCU11TUZpGgldUaqaZJUrWXpU1qbmTRkliXD5DNoxCw-vGlppLq6mDWlE2R9cH3-0QP6acserbZF3XmeDilColgDMllM7k1S9yE6chJ88QUGAKGMsQHCA7xJQG56vt0PZm2FVAqv1nqz-fzRp60KTMhnc3_Bj_L_oCmwt5GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>812138133</pqid></control><display><type>article</type><title>Convenient system of FEM test functions for computational fluid dynamics</title><source>Springer Nature - Complete Springer Journals</source><creator>Zakiev, S. E. ; Kholpanov, L. P.</creator><creatorcontrib>Zakiev, S. E. ; Kholpanov, L. P.</creatorcontrib><description>For the development of finite element schemes, a fundamentally new system of test functions defined on a finite element that is a convex quadrilateral is proposed. Due to the remarkable properties of the system (specifically, mutual orthogonality), the resulting matrices can be simplified and the corresponding construction procedures can be made more transparent, especially for problems in computational fluid dynamics. Thus, the system of test functions may play an important role in finite element methods as applied to two-dimensional problems.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542510110102</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Computational fluid dynamics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Construction specifications ; Dynamical systems ; Dynamics ; Finite element analysis ; Finite element method ; Fluid dynamics ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Orthogonality ; Physics ; Studies</subject><ispartof>Computational mathematics and mathematical physics, 2010-11, Vol.50 (11), p.1859-1870</ispartof><rights>Pleiades Publishing, Ltd. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-529b264ad71f8279393c087bf84b0b5e7a870ae5107d321d5bdc4957c92e1b823</citedby><cites>FETCH-LOGICAL-c347t-529b264ad71f8279393c087bf84b0b5e7a870ae5107d321d5bdc4957c92e1b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542510110102$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542510110102$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zakiev, S. E.</creatorcontrib><creatorcontrib>Kholpanov, L. P.</creatorcontrib><title>Convenient system of FEM test functions for computational fluid dynamics</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>For the development of finite element schemes, a fundamentally new system of test functions defined on a finite element that is a convex quadrilateral is proposed. Due to the remarkable properties of the system (specifically, mutual orthogonality), the resulting matrices can be simplified and the corresponding construction procedures can be made more transparent, especially for problems in computational fluid dynamics. Thus, the system of test functions may play an important role in finite element methods as applied to two-dimensional problems.</description><subject>Computational fluid dynamics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Construction specifications</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orthogonality</subject><subject>Physics</subject><subject>Studies</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG_Bi6dqJmn-HWXZdQXFg3ouaZpIlzZZm1bYb2-WFQRFGBiY-b3Hm0HoEsgNACtvX4gWnJeUA4FchB6hGXDOCyEEPUaz_brY70_RWUobQkBoxWZovYjh04XWhRGnXRpdj6PHq-UTHl0asZ-CHdsYEvZxwDb222k0-4HpsO-mtsHNLpi-tekcnXjTJXfx3efobbV8XayLx-f7h8XdY2FZKceCU11TUZpGgldUaqaZJUrWXpU1qbmTRkliXD5DNoxCw-vGlppLq6mDWlE2R9cH3-0QP6acserbZF3XmeDilColgDMllM7k1S9yE6chJ88QUGAKGMsQHCA7xJQG56vt0PZm2FVAqv1nqz-fzRp60KTMhnc3_Bj_L_oCmwt5GA</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Zakiev, S. E.</creator><creator>Kholpanov, L. P.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20101101</creationdate><title>Convenient system of FEM test functions for computational fluid dynamics</title><author>Zakiev, S. E. ; Kholpanov, L. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-529b264ad71f8279393c087bf84b0b5e7a870ae5107d321d5bdc4957c92e1b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computational fluid dynamics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Construction specifications</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orthogonality</topic><topic>Physics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakiev, S. E.</creatorcontrib><creatorcontrib>Kholpanov, L. P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakiev, S. E.</au><au>Kholpanov, L. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convenient system of FEM test functions for computational fluid dynamics</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>50</volume><issue>11</issue><spage>1859</spage><epage>1870</epage><pages>1859-1870</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>For the development of finite element schemes, a fundamentally new system of test functions defined on a finite element that is a convex quadrilateral is proposed. Due to the remarkable properties of the system (specifically, mutual orthogonality), the resulting matrices can be simplified and the corresponding construction procedures can be made more transparent, especially for problems in computational fluid dynamics. Thus, the system of test functions may play an important role in finite element methods as applied to two-dimensional problems.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0965542510110102</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2010-11, Vol.50 (11), p.1859-1870
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_miscellaneous_861538689
source Springer Nature - Complete Springer Journals
subjects Computational fluid dynamics
Computational mathematics
Computational Mathematics and Numerical Analysis
Construction specifications
Dynamical systems
Dynamics
Finite element analysis
Finite element method
Fluid dynamics
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Orthogonality
Physics
Studies
title Convenient system of FEM test functions for computational fluid dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convenient%20system%20of%20FEM%20test%20functions%20for%20computational%20fluid%20dynamics&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Zakiev,%20S.%20E.&rft.date=2010-11-01&rft.volume=50&rft.issue=11&rft.spage=1859&rft.epage=1870&rft.pages=1859-1870&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542510110102&rft_dat=%3Cproquest_cross%3E861538689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=812138133&rft_id=info:pmid/&rfr_iscdi=true