Plastic deformation of low-density polyethylene reinforced with biodegradable polylactide, Part 1: Microstructural analysis and tensile behavior at constant true strain-rate
Blends of low‐density polyethylene (LDPE) and polylactide (PLA) were prepared by melt coextrusion. The plastic behavior of the LDPE/PLA blends was investigated at room temperature under uniaxial tension by means of a video‐controlled system. The constitutive behavior was analyzed in terms of the var...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2011-01, Vol.51 (1), p.117-125 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | 1 |
container_start_page | 117 |
container_title | Polymer engineering and science |
container_volume | 51 |
creator | Rezgui, F. G'Sell, C. Dahoun, A. Hiver, J.M. Sadoun, T. |
description | Blends of low‐density polyethylene (LDPE) and polylactide (PLA) were prepared by melt coextrusion. The plastic behavior of the LDPE/PLA blends was investigated at room temperature under uniaxial tension by means of a video‐controlled system. The constitutive behavior was analyzed in terms of the variations of true stress vs. true strain at constant true strain rate. With increasing concentrations of PLA, the blend show: (i) higher Young's modulus, (ii) stiffer viscoelastic response, (iii) increase of elastic limit stress, and (iv) earlier fracture. Particular attention was paid to the evolution of the volume strain with the applied strain. While dilatation begins very lately for the neat LDPE, the LDPE/PLA blends show increasing deformation damage as the PLA content is increased. Scanning electron microscopy of deformed specimens shows that cavitation occurs preferentially at the poles of the PLA particles whose adhesion to the LDPE matrix seems very weak despite the partial grafting of polyethylene chains with maleic anhydride. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers. |
doi_str_mv | 10.1002/pen.21797 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_861538192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A246836090</galeid><sourcerecordid>A246836090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5727-b1fcf1142128bb7f5c9cad67da5d3b1cfcb7db522f0463f92ee20d340467fee53</originalsourceid><addsrcrecordid>eNp1kttuEzEYhFcIJErhgjewQAghdVMf9hTu2lJKRSkRB3Fpee3fiVvHDraXkofiHXGaUBEUtJLXlr4Za8Z_UTwleEQwpocLcCNK2nF7r9gjddWVtGHV_WIPY0ZL1nXdw-JRjFc4s6we7xW_JlbEZCRSoH2Yi2S8Q14j629KBS6atEQLb5eQZksLDlAA4zIpQaEbk2aoN17BNAglegu3qBUyGQUHaCJCQuQ1-mBk8DGFQaYhCIuEE3YZTcwbhdLqkqzsYSZ-GB-QSEh6F5NwCWUNoKwUxpVBJHhcPNDCRniy-e8XX9-efjl5V158PDs_ObooZd3StuyJlpqQihLa9X2razmWQjWtErViPZFa9q3qa0o1rhqmxxSAYsWqfGo1QM32i5dr30Xw3weIic9NlGCtcOCHyLuG1KwjY5rJZ_-QV34IOWCGKtxhUrEmQ8_X0FRY4Kv-ciS5suRHtGo61uAxzlS5g5rm0nNp3oHONW3zox18_hTMjdwpeLUlyEyCn2kqhhj5-edP2-zBX2w_ROMg5iWa6SzFtWSX9eqlYwDNF8HMRVhygvlqMHkeTH47mJl9salMRCmsDsJJE-8ElHV5bmmXucM1d5NzLP9vyCenl3-cNw2amIPdKUS45k3L2pp_uzzj7Jgcv2kn73nNfgM2hwJD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>840801436</pqid></control><display><type>article</type><title>Plastic deformation of low-density polyethylene reinforced with biodegradable polylactide, Part 1: Microstructural analysis and tensile behavior at constant true strain-rate</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rezgui, F. ; G'Sell, C. ; Dahoun, A. ; Hiver, J.M. ; Sadoun, T.</creator><creatorcontrib>Rezgui, F. ; G'Sell, C. ; Dahoun, A. ; Hiver, J.M. ; Sadoun, T.</creatorcontrib><description>Blends of low‐density polyethylene (LDPE) and polylactide (PLA) were prepared by melt coextrusion. The plastic behavior of the LDPE/PLA blends was investigated at room temperature under uniaxial tension by means of a video‐controlled system. The constitutive behavior was analyzed in terms of the variations of true stress vs. true strain at constant true strain rate. With increasing concentrations of PLA, the blend show: (i) higher Young's modulus, (ii) stiffer viscoelastic response, (iii) increase of elastic limit stress, and (iv) earlier fracture. Particular attention was paid to the evolution of the volume strain with the applied strain. While dilatation begins very lately for the neat LDPE, the LDPE/PLA blends show increasing deformation damage as the PLA content is increased. Scanning electron microscopy of deformed specimens shows that cavitation occurs preferentially at the poles of the PLA particles whose adhesion to the LDPE matrix seems very weak despite the partial grafting of polyethylene chains with maleic anhydride. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.21797</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Analysis ; Applied sciences ; Biodegradation ; Deformations (Mechanics) ; Exact sciences and technology ; Extrusion moulding ; Low density polyethylenes ; Machinery and processing ; Moulding ; Plastic deformation ; Plastics ; Polymer industry, paints, wood ; Scanning electron microscopy ; Strain rate ; Strains and stresses ; Strength of materials ; Stress relaxation (Materials) ; Stress relieving (Materials) ; Technology of polymers ; Tensile strength ; Viscoelasticity</subject><ispartof>Polymer engineering and science, 2011-01, Vol.51 (1), p.117-125</ispartof><rights>Copyright © 2010 Society of Plastics Engineers</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Society of Plastics Engineers, Inc.</rights><rights>Copyright Society of Plastics Engineers Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5727-b1fcf1142128bb7f5c9cad67da5d3b1cfcb7db522f0463f92ee20d340467fee53</citedby><cites>FETCH-LOGICAL-c5727-b1fcf1142128bb7f5c9cad67da5d3b1cfcb7db522f0463f92ee20d340467fee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.21797$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.21797$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23854828$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rezgui, F.</creatorcontrib><creatorcontrib>G'Sell, C.</creatorcontrib><creatorcontrib>Dahoun, A.</creatorcontrib><creatorcontrib>Hiver, J.M.</creatorcontrib><creatorcontrib>Sadoun, T.</creatorcontrib><title>Plastic deformation of low-density polyethylene reinforced with biodegradable polylactide, Part 1: Microstructural analysis and tensile behavior at constant true strain-rate</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>Blends of low‐density polyethylene (LDPE) and polylactide (PLA) were prepared by melt coextrusion. The plastic behavior of the LDPE/PLA blends was investigated at room temperature under uniaxial tension by means of a video‐controlled system. The constitutive behavior was analyzed in terms of the variations of true stress vs. true strain at constant true strain rate. With increasing concentrations of PLA, the blend show: (i) higher Young's modulus, (ii) stiffer viscoelastic response, (iii) increase of elastic limit stress, and (iv) earlier fracture. Particular attention was paid to the evolution of the volume strain with the applied strain. While dilatation begins very lately for the neat LDPE, the LDPE/PLA blends show increasing deformation damage as the PLA content is increased. Scanning electron microscopy of deformed specimens shows that cavitation occurs preferentially at the poles of the PLA particles whose adhesion to the LDPE matrix seems very weak despite the partial grafting of polyethylene chains with maleic anhydride. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers.</description><subject>Analysis</subject><subject>Applied sciences</subject><subject>Biodegradation</subject><subject>Deformations (Mechanics)</subject><subject>Exact sciences and technology</subject><subject>Extrusion moulding</subject><subject>Low density polyethylenes</subject><subject>Machinery and processing</subject><subject>Moulding</subject><subject>Plastic deformation</subject><subject>Plastics</subject><subject>Polymer industry, paints, wood</subject><subject>Scanning electron microscopy</subject><subject>Strain rate</subject><subject>Strains and stresses</subject><subject>Strength of materials</subject><subject>Stress relaxation (Materials)</subject><subject>Stress relieving (Materials)</subject><subject>Technology of polymers</subject><subject>Tensile strength</subject><subject>Viscoelasticity</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kttuEzEYhFcIJErhgjewQAghdVMf9hTu2lJKRSkRB3Fpee3fiVvHDraXkofiHXGaUBEUtJLXlr4Za8Z_UTwleEQwpocLcCNK2nF7r9gjddWVtGHV_WIPY0ZL1nXdw-JRjFc4s6we7xW_JlbEZCRSoH2Yi2S8Q14j629KBS6atEQLb5eQZksLDlAA4zIpQaEbk2aoN17BNAglegu3qBUyGQUHaCJCQuQ1-mBk8DGFQaYhCIuEE3YZTcwbhdLqkqzsYSZ-GB-QSEh6F5NwCWUNoKwUxpVBJHhcPNDCRniy-e8XX9-efjl5V158PDs_ObooZd3StuyJlpqQihLa9X2razmWQjWtErViPZFa9q3qa0o1rhqmxxSAYsWqfGo1QM32i5dr30Xw3weIic9NlGCtcOCHyLuG1KwjY5rJZ_-QV34IOWCGKtxhUrEmQ8_X0FRY4Kv-ciS5suRHtGo61uAxzlS5g5rm0nNp3oHONW3zox18_hTMjdwpeLUlyEyCn2kqhhj5-edP2-zBX2w_ROMg5iWa6SzFtWSX9eqlYwDNF8HMRVhygvlqMHkeTH47mJl9salMRCmsDsJJE-8ElHV5bmmXucM1d5NzLP9vyCenl3-cNw2amIPdKUS45k3L2pp_uzzj7Jgcv2kn73nNfgM2hwJD</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Rezgui, F.</creator><creator>G'Sell, C.</creator><creator>Dahoun, A.</creator><creator>Hiver, J.M.</creator><creator>Sadoun, T.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QO</scope><scope>7T7</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201101</creationdate><title>Plastic deformation of low-density polyethylene reinforced with biodegradable polylactide, Part 1: Microstructural analysis and tensile behavior at constant true strain-rate</title><author>Rezgui, F. ; G'Sell, C. ; Dahoun, A. ; Hiver, J.M. ; Sadoun, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5727-b1fcf1142128bb7f5c9cad67da5d3b1cfcb7db522f0463f92ee20d340467fee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Applied sciences</topic><topic>Biodegradation</topic><topic>Deformations (Mechanics)</topic><topic>Exact sciences and technology</topic><topic>Extrusion moulding</topic><topic>Low density polyethylenes</topic><topic>Machinery and processing</topic><topic>Moulding</topic><topic>Plastic deformation</topic><topic>Plastics</topic><topic>Polymer industry, paints, wood</topic><topic>Scanning electron microscopy</topic><topic>Strain rate</topic><topic>Strains and stresses</topic><topic>Strength of materials</topic><topic>Stress relaxation (Materials)</topic><topic>Stress relieving (Materials)</topic><topic>Technology of polymers</topic><topic>Tensile strength</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezgui, F.</creatorcontrib><creatorcontrib>G'Sell, C.</creatorcontrib><creatorcontrib>Dahoun, A.</creatorcontrib><creatorcontrib>Hiver, J.M.</creatorcontrib><creatorcontrib>Sadoun, T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezgui, F.</au><au>G'Sell, C.</au><au>Dahoun, A.</au><au>Hiver, J.M.</au><au>Sadoun, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastic deformation of low-density polyethylene reinforced with biodegradable polylactide, Part 1: Microstructural analysis and tensile behavior at constant true strain-rate</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2011-01</date><risdate>2011</risdate><volume>51</volume><issue>1</issue><spage>117</spage><epage>125</epage><pages>117-125</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>Blends of low‐density polyethylene (LDPE) and polylactide (PLA) were prepared by melt coextrusion. The plastic behavior of the LDPE/PLA blends was investigated at room temperature under uniaxial tension by means of a video‐controlled system. The constitutive behavior was analyzed in terms of the variations of true stress vs. true strain at constant true strain rate. With increasing concentrations of PLA, the blend show: (i) higher Young's modulus, (ii) stiffer viscoelastic response, (iii) increase of elastic limit stress, and (iv) earlier fracture. Particular attention was paid to the evolution of the volume strain with the applied strain. While dilatation begins very lately for the neat LDPE, the LDPE/PLA blends show increasing deformation damage as the PLA content is increased. Scanning electron microscopy of deformed specimens shows that cavitation occurs preferentially at the poles of the PLA particles whose adhesion to the LDPE matrix seems very weak despite the partial grafting of polyethylene chains with maleic anhydride. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.21797</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2011-01, Vol.51 (1), p.117-125 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_miscellaneous_861538192 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Analysis Applied sciences Biodegradation Deformations (Mechanics) Exact sciences and technology Extrusion moulding Low density polyethylenes Machinery and processing Moulding Plastic deformation Plastics Polymer industry, paints, wood Scanning electron microscopy Strain rate Strains and stresses Strength of materials Stress relaxation (Materials) Stress relieving (Materials) Technology of polymers Tensile strength Viscoelasticity |
title | Plastic deformation of low-density polyethylene reinforced with biodegradable polylactide, Part 1: Microstructural analysis and tensile behavior at constant true strain-rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastic%20deformation%20of%20low-density%20polyethylene%20reinforced%20with%20biodegradable%20polylactide,%20Part%201:%20Microstructural%20analysis%20and%20tensile%20behavior%20at%20constant%20true%20strain-rate&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Rezgui,%20F.&rft.date=2011-01&rft.volume=51&rft.issue=1&rft.spage=117&rft.epage=125&rft.pages=117-125&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.21797&rft_dat=%3Cgale_proqu%3EA246836090%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=840801436&rft_id=info:pmid/&rft_galeid=A246836090&rfr_iscdi=true |