Synthesis, structure, and optical properties of Au―TiO2 composite thin films
Titanium dioxide (TiO2) films with varying concentrations of gold particles were synthesized using pulsed DC magnetron sputtering, with the intent to develop infrared reflecting films for use on cars and planes to reduce solar heat load. Under our deposition conditions, the films are smooth (RMS rou...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2010-12, Vol.519 (5), p.1490-1494 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1494 |
---|---|
container_issue | 5 |
container_start_page | 1490 |
container_title | Thin solid films |
container_volume | 519 |
creator | RANADE, Alpana N FULTON, Christopher SEEBERGH, Jill E NICHOLS, Mark REMILLARD, Jeffrey GRAHAM, Michael CHUNG, Yip-Wah |
description | Titanium dioxide (TiO2) films with varying concentrations of gold particles were synthesized using pulsed DC magnetron sputtering, with the intent to develop infrared reflecting films for use on cars and planes to reduce solar heat load. Under our deposition conditions, the films are smooth (RMS roughness on the order of 1.0-2.0nm) and consist of rutile TiO2 with embedded gold. The average gold particle diameter on the sample surface was found to change from 60 to 200nm as the volume fraction of gold in the films increased from 1.9 to 4.3% (3.5 to 7.9mol% Au). The maximum reflectance of these films in the infrared region (800-2500nm) is >50%, compared with 30% for pure TiO2. The Maxwell-Garnett equation does not model the reflectance data very well, due to the relatively large gold particle size. Instead, by assuming that the contribution of gold particles to the reflectance response is proportional to their projected areal fraction in an effective medium approximation, we were able to fit the observed reflectance data quite well. |
doi_str_mv | 10.1016/j.tsf.2010.08.083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861536172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>861536172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-ed30657f007ad32476cb4080f4a8f6d54258ad29a8f7715fcfe758eaf1c530863</originalsourceid><addsrcrecordid>eNo9kM1KBDEQhIMouP48gLdcxIuzdpKZJHtcFv9A9KCeQ8wkmGV2ZkxnDt58CV_QJzGyi1DQFFQVzUfIGYM5Ayav1vOMYc6heNBFYo_MmFaLiivB9skMoIZKwgIOyRHiGgAY52JGHp8_-_zuMeIlxZwml6fkL6ntWzqMOTrb0TENo085eqRDoMvp5-v7JT5x6obNOGDMnub32NMQuw2ekINgO_Snu3tMXm-uX1Z31cPT7f1q-VA5ASpXvhUgGxUAlG0Fr5V0bzVoCLXVQbZNzRttW74oTinWBBe8arS3gblGgJbimFxsd8tzH5PHbDYRne862_thQqMla4Rkipck2yZdGhCTD2ZMcWPTp2Fg_tCZtSnozB86A7pIlM75bt1iIRCS7V3E_yIXC2CikeIX7ENwZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861536172</pqid></control><display><type>article</type><title>Synthesis, structure, and optical properties of Au―TiO2 composite thin films</title><source>Elsevier ScienceDirect Journals</source><creator>RANADE, Alpana N ; FULTON, Christopher ; SEEBERGH, Jill E ; NICHOLS, Mark ; REMILLARD, Jeffrey ; GRAHAM, Michael ; CHUNG, Yip-Wah</creator><creatorcontrib>RANADE, Alpana N ; FULTON, Christopher ; SEEBERGH, Jill E ; NICHOLS, Mark ; REMILLARD, Jeffrey ; GRAHAM, Michael ; CHUNG, Yip-Wah</creatorcontrib><description>Titanium dioxide (TiO2) films with varying concentrations of gold particles were synthesized using pulsed DC magnetron sputtering, with the intent to develop infrared reflecting films for use on cars and planes to reduce solar heat load. Under our deposition conditions, the films are smooth (RMS roughness on the order of 1.0-2.0nm) and consist of rutile TiO2 with embedded gold. The average gold particle diameter on the sample surface was found to change from 60 to 200nm as the volume fraction of gold in the films increased from 1.9 to 4.3% (3.5 to 7.9mol% Au). The maximum reflectance of these films in the infrared region (800-2500nm) is >50%, compared with 30% for pure TiO2. The Maxwell-Garnett equation does not model the reflectance data very well, due to the relatively large gold particle size. Instead, by assuming that the contribution of gold particles to the reflectance response is proportional to their projected areal fraction in an effective medium approximation, we were able to fit the observed reflectance data quite well.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2010.08.083</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Deposition by sputtering ; Exact sciences and technology ; Gold ; Infrared ; Magnetron sputtering ; Materials science ; Mathematical analysis ; Methods of deposition of films and coatings; film growth and epitaxy ; Nanoscale materials and structures: fabrication and characterization ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of specific thin films ; Other topics in nanoscale materials and structures ; Particulate composites ; Physics ; Reflectance ; Reflectivity ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Thin films ; Titanium dioxide</subject><ispartof>Thin solid films, 2010-12, Vol.519 (5), p.1490-1494</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-ed30657f007ad32476cb4080f4a8f6d54258ad29a8f7715fcfe758eaf1c530863</citedby><cites>FETCH-LOGICAL-c307t-ed30657f007ad32476cb4080f4a8f6d54258ad29a8f7715fcfe758eaf1c530863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23911,23912,25120,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23901356$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RANADE, Alpana N</creatorcontrib><creatorcontrib>FULTON, Christopher</creatorcontrib><creatorcontrib>SEEBERGH, Jill E</creatorcontrib><creatorcontrib>NICHOLS, Mark</creatorcontrib><creatorcontrib>REMILLARD, Jeffrey</creatorcontrib><creatorcontrib>GRAHAM, Michael</creatorcontrib><creatorcontrib>CHUNG, Yip-Wah</creatorcontrib><title>Synthesis, structure, and optical properties of Au―TiO2 composite thin films</title><title>Thin solid films</title><description>Titanium dioxide (TiO2) films with varying concentrations of gold particles were synthesized using pulsed DC magnetron sputtering, with the intent to develop infrared reflecting films for use on cars and planes to reduce solar heat load. Under our deposition conditions, the films are smooth (RMS roughness on the order of 1.0-2.0nm) and consist of rutile TiO2 with embedded gold. The average gold particle diameter on the sample surface was found to change from 60 to 200nm as the volume fraction of gold in the films increased from 1.9 to 4.3% (3.5 to 7.9mol% Au). The maximum reflectance of these films in the infrared region (800-2500nm) is >50%, compared with 30% for pure TiO2. The Maxwell-Garnett equation does not model the reflectance data very well, due to the relatively large gold particle size. Instead, by assuming that the contribution of gold particles to the reflectance response is proportional to their projected areal fraction in an effective medium approximation, we were able to fit the observed reflectance data quite well.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition by sputtering</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Infrared</subject><subject>Magnetron sputtering</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of specific thin films</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Particulate composites</subject><subject>Physics</subject><subject>Reflectance</subject><subject>Reflectivity</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><subject>Titanium dioxide</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KBDEQhIMouP48gLdcxIuzdpKZJHtcFv9A9KCeQ8wkmGV2ZkxnDt58CV_QJzGyi1DQFFQVzUfIGYM5Ayav1vOMYc6heNBFYo_MmFaLiivB9skMoIZKwgIOyRHiGgAY52JGHp8_-_zuMeIlxZwml6fkL6ntWzqMOTrb0TENo085eqRDoMvp5-v7JT5x6obNOGDMnub32NMQuw2ekINgO_Snu3tMXm-uX1Z31cPT7f1q-VA5ASpXvhUgGxUAlG0Fr5V0bzVoCLXVQbZNzRttW74oTinWBBe8arS3gblGgJbimFxsd8tzH5PHbDYRne862_thQqMla4Rkipck2yZdGhCTD2ZMcWPTp2Fg_tCZtSnozB86A7pIlM75bt1iIRCS7V3E_yIXC2CikeIX7ENwZw</recordid><startdate>20101230</startdate><enddate>20101230</enddate><creator>RANADE, Alpana N</creator><creator>FULTON, Christopher</creator><creator>SEEBERGH, Jill E</creator><creator>NICHOLS, Mark</creator><creator>REMILLARD, Jeffrey</creator><creator>GRAHAM, Michael</creator><creator>CHUNG, Yip-Wah</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101230</creationdate><title>Synthesis, structure, and optical properties of Au―TiO2 composite thin films</title><author>RANADE, Alpana N ; FULTON, Christopher ; SEEBERGH, Jill E ; NICHOLS, Mark ; REMILLARD, Jeffrey ; GRAHAM, Michael ; CHUNG, Yip-Wah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-ed30657f007ad32476cb4080f4a8f6d54258ad29a8f7715fcfe758eaf1c530863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition by sputtering</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Infrared</topic><topic>Magnetron sputtering</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of specific thin films</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Particulate composites</topic><topic>Physics</topic><topic>Reflectance</topic><topic>Reflectivity</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RANADE, Alpana N</creatorcontrib><creatorcontrib>FULTON, Christopher</creatorcontrib><creatorcontrib>SEEBERGH, Jill E</creatorcontrib><creatorcontrib>NICHOLS, Mark</creatorcontrib><creatorcontrib>REMILLARD, Jeffrey</creatorcontrib><creatorcontrib>GRAHAM, Michael</creatorcontrib><creatorcontrib>CHUNG, Yip-Wah</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RANADE, Alpana N</au><au>FULTON, Christopher</au><au>SEEBERGH, Jill E</au><au>NICHOLS, Mark</au><au>REMILLARD, Jeffrey</au><au>GRAHAM, Michael</au><au>CHUNG, Yip-Wah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, structure, and optical properties of Au―TiO2 composite thin films</atitle><jtitle>Thin solid films</jtitle><date>2010-12-30</date><risdate>2010</risdate><volume>519</volume><issue>5</issue><spage>1490</spage><epage>1494</epage><pages>1490-1494</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>Titanium dioxide (TiO2) films with varying concentrations of gold particles were synthesized using pulsed DC magnetron sputtering, with the intent to develop infrared reflecting films for use on cars and planes to reduce solar heat load. Under our deposition conditions, the films are smooth (RMS roughness on the order of 1.0-2.0nm) and consist of rutile TiO2 with embedded gold. The average gold particle diameter on the sample surface was found to change from 60 to 200nm as the volume fraction of gold in the films increased from 1.9 to 4.3% (3.5 to 7.9mol% Au). The maximum reflectance of these films in the infrared region (800-2500nm) is >50%, compared with 30% for pure TiO2. The Maxwell-Garnett equation does not model the reflectance data very well, due to the relatively large gold particle size. Instead, by assuming that the contribution of gold particles to the reflectance response is proportional to their projected areal fraction in an effective medium approximation, we were able to fit the observed reflectance data quite well.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.tsf.2010.08.083</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2010-12, Vol.519 (5), p.1490-1494 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_861536172 |
source | Elsevier ScienceDirect Journals |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Deposition by sputtering Exact sciences and technology Gold Infrared Magnetron sputtering Materials science Mathematical analysis Methods of deposition of films and coatings film growth and epitaxy Nanoscale materials and structures: fabrication and characterization Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of specific thin films Other topics in nanoscale materials and structures Particulate composites Physics Reflectance Reflectivity Structure and morphology thickness Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology Thin films Titanium dioxide |
title | Synthesis, structure, and optical properties of Au―TiO2 composite thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20structure,%20and%20optical%20properties%20of%20Au%E2%80%95TiO2%20composite%20thin%20films&rft.jtitle=Thin%20solid%20films&rft.au=RANADE,%20Alpana%20N&rft.date=2010-12-30&rft.volume=519&rft.issue=5&rft.spage=1490&rft.epage=1494&rft.pages=1490-1494&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2010.08.083&rft_dat=%3Cproquest_cross%3E861536172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861536172&rft_id=info:pmid/&rfr_iscdi=true |