Synthesis, structure, and optical properties of Au―TiO2 composite thin films

Titanium dioxide (TiO2) films with varying concentrations of gold particles were synthesized using pulsed DC magnetron sputtering, with the intent to develop infrared reflecting films for use on cars and planes to reduce solar heat load. Under our deposition conditions, the films are smooth (RMS rou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2010-12, Vol.519 (5), p.1490-1494
Hauptverfasser: RANADE, Alpana N, FULTON, Christopher, SEEBERGH, Jill E, NICHOLS, Mark, REMILLARD, Jeffrey, GRAHAM, Michael, CHUNG, Yip-Wah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1494
container_issue 5
container_start_page 1490
container_title Thin solid films
container_volume 519
creator RANADE, Alpana N
FULTON, Christopher
SEEBERGH, Jill E
NICHOLS, Mark
REMILLARD, Jeffrey
GRAHAM, Michael
CHUNG, Yip-Wah
description Titanium dioxide (TiO2) films with varying concentrations of gold particles were synthesized using pulsed DC magnetron sputtering, with the intent to develop infrared reflecting films for use on cars and planes to reduce solar heat load. Under our deposition conditions, the films are smooth (RMS roughness on the order of 1.0-2.0nm) and consist of rutile TiO2 with embedded gold. The average gold particle diameter on the sample surface was found to change from 60 to 200nm as the volume fraction of gold in the films increased from 1.9 to 4.3% (3.5 to 7.9mol% Au). The maximum reflectance of these films in the infrared region (800-2500nm) is >50%, compared with 30% for pure TiO2. The Maxwell-Garnett equation does not model the reflectance data very well, due to the relatively large gold particle size. Instead, by assuming that the contribution of gold particles to the reflectance response is proportional to their projected areal fraction in an effective medium approximation, we were able to fit the observed reflectance data quite well.
doi_str_mv 10.1016/j.tsf.2010.08.083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861536172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>861536172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-ed30657f007ad32476cb4080f4a8f6d54258ad29a8f7715fcfe758eaf1c530863</originalsourceid><addsrcrecordid>eNo9kM1KBDEQhIMouP48gLdcxIuzdpKZJHtcFv9A9KCeQ8wkmGV2ZkxnDt58CV_QJzGyi1DQFFQVzUfIGYM5Ayav1vOMYc6heNBFYo_MmFaLiivB9skMoIZKwgIOyRHiGgAY52JGHp8_-_zuMeIlxZwml6fkL6ntWzqMOTrb0TENo085eqRDoMvp5-v7JT5x6obNOGDMnub32NMQuw2ekINgO_Snu3tMXm-uX1Z31cPT7f1q-VA5ASpXvhUgGxUAlG0Fr5V0bzVoCLXVQbZNzRttW74oTinWBBe8arS3gblGgJbimFxsd8tzH5PHbDYRne862_thQqMla4Rkipck2yZdGhCTD2ZMcWPTp2Fg_tCZtSnozB86A7pIlM75bt1iIRCS7V3E_yIXC2CikeIX7ENwZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861536172</pqid></control><display><type>article</type><title>Synthesis, structure, and optical properties of Au―TiO2 composite thin films</title><source>Elsevier ScienceDirect Journals</source><creator>RANADE, Alpana N ; FULTON, Christopher ; SEEBERGH, Jill E ; NICHOLS, Mark ; REMILLARD, Jeffrey ; GRAHAM, Michael ; CHUNG, Yip-Wah</creator><creatorcontrib>RANADE, Alpana N ; FULTON, Christopher ; SEEBERGH, Jill E ; NICHOLS, Mark ; REMILLARD, Jeffrey ; GRAHAM, Michael ; CHUNG, Yip-Wah</creatorcontrib><description>Titanium dioxide (TiO2) films with varying concentrations of gold particles were synthesized using pulsed DC magnetron sputtering, with the intent to develop infrared reflecting films for use on cars and planes to reduce solar heat load. Under our deposition conditions, the films are smooth (RMS roughness on the order of 1.0-2.0nm) and consist of rutile TiO2 with embedded gold. The average gold particle diameter on the sample surface was found to change from 60 to 200nm as the volume fraction of gold in the films increased from 1.9 to 4.3% (3.5 to 7.9mol% Au). The maximum reflectance of these films in the infrared region (800-2500nm) is &gt;50%, compared with 30% for pure TiO2. The Maxwell-Garnett equation does not model the reflectance data very well, due to the relatively large gold particle size. Instead, by assuming that the contribution of gold particles to the reflectance response is proportional to their projected areal fraction in an effective medium approximation, we were able to fit the observed reflectance data quite well.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2010.08.083</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Deposition by sputtering ; Exact sciences and technology ; Gold ; Infrared ; Magnetron sputtering ; Materials science ; Mathematical analysis ; Methods of deposition of films and coatings; film growth and epitaxy ; Nanoscale materials and structures: fabrication and characterization ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of specific thin films ; Other topics in nanoscale materials and structures ; Particulate composites ; Physics ; Reflectance ; Reflectivity ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Thin films ; Titanium dioxide</subject><ispartof>Thin solid films, 2010-12, Vol.519 (5), p.1490-1494</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-ed30657f007ad32476cb4080f4a8f6d54258ad29a8f7715fcfe758eaf1c530863</citedby><cites>FETCH-LOGICAL-c307t-ed30657f007ad32476cb4080f4a8f6d54258ad29a8f7715fcfe758eaf1c530863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23911,23912,25120,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23901356$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RANADE, Alpana N</creatorcontrib><creatorcontrib>FULTON, Christopher</creatorcontrib><creatorcontrib>SEEBERGH, Jill E</creatorcontrib><creatorcontrib>NICHOLS, Mark</creatorcontrib><creatorcontrib>REMILLARD, Jeffrey</creatorcontrib><creatorcontrib>GRAHAM, Michael</creatorcontrib><creatorcontrib>CHUNG, Yip-Wah</creatorcontrib><title>Synthesis, structure, and optical properties of Au―TiO2 composite thin films</title><title>Thin solid films</title><description>Titanium dioxide (TiO2) films with varying concentrations of gold particles were synthesized using pulsed DC magnetron sputtering, with the intent to develop infrared reflecting films for use on cars and planes to reduce solar heat load. Under our deposition conditions, the films are smooth (RMS roughness on the order of 1.0-2.0nm) and consist of rutile TiO2 with embedded gold. The average gold particle diameter on the sample surface was found to change from 60 to 200nm as the volume fraction of gold in the films increased from 1.9 to 4.3% (3.5 to 7.9mol% Au). The maximum reflectance of these films in the infrared region (800-2500nm) is &gt;50%, compared with 30% for pure TiO2. The Maxwell-Garnett equation does not model the reflectance data very well, due to the relatively large gold particle size. Instead, by assuming that the contribution of gold particles to the reflectance response is proportional to their projected areal fraction in an effective medium approximation, we were able to fit the observed reflectance data quite well.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition by sputtering</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Infrared</subject><subject>Magnetron sputtering</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of specific thin films</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Particulate composites</subject><subject>Physics</subject><subject>Reflectance</subject><subject>Reflectivity</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><subject>Titanium dioxide</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KBDEQhIMouP48gLdcxIuzdpKZJHtcFv9A9KCeQ8wkmGV2ZkxnDt58CV_QJzGyi1DQFFQVzUfIGYM5Ayav1vOMYc6heNBFYo_MmFaLiivB9skMoIZKwgIOyRHiGgAY52JGHp8_-_zuMeIlxZwml6fkL6ntWzqMOTrb0TENo085eqRDoMvp5-v7JT5x6obNOGDMnub32NMQuw2ekINgO_Snu3tMXm-uX1Z31cPT7f1q-VA5ASpXvhUgGxUAlG0Fr5V0bzVoCLXVQbZNzRttW74oTinWBBe8arS3gblGgJbimFxsd8tzH5PHbDYRne862_thQqMla4Rkipck2yZdGhCTD2ZMcWPTp2Fg_tCZtSnozB86A7pIlM75bt1iIRCS7V3E_yIXC2CikeIX7ENwZw</recordid><startdate>20101230</startdate><enddate>20101230</enddate><creator>RANADE, Alpana N</creator><creator>FULTON, Christopher</creator><creator>SEEBERGH, Jill E</creator><creator>NICHOLS, Mark</creator><creator>REMILLARD, Jeffrey</creator><creator>GRAHAM, Michael</creator><creator>CHUNG, Yip-Wah</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101230</creationdate><title>Synthesis, structure, and optical properties of Au―TiO2 composite thin films</title><author>RANADE, Alpana N ; FULTON, Christopher ; SEEBERGH, Jill E ; NICHOLS, Mark ; REMILLARD, Jeffrey ; GRAHAM, Michael ; CHUNG, Yip-Wah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-ed30657f007ad32476cb4080f4a8f6d54258ad29a8f7715fcfe758eaf1c530863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition by sputtering</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Infrared</topic><topic>Magnetron sputtering</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of specific thin films</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Particulate composites</topic><topic>Physics</topic><topic>Reflectance</topic><topic>Reflectivity</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RANADE, Alpana N</creatorcontrib><creatorcontrib>FULTON, Christopher</creatorcontrib><creatorcontrib>SEEBERGH, Jill E</creatorcontrib><creatorcontrib>NICHOLS, Mark</creatorcontrib><creatorcontrib>REMILLARD, Jeffrey</creatorcontrib><creatorcontrib>GRAHAM, Michael</creatorcontrib><creatorcontrib>CHUNG, Yip-Wah</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RANADE, Alpana N</au><au>FULTON, Christopher</au><au>SEEBERGH, Jill E</au><au>NICHOLS, Mark</au><au>REMILLARD, Jeffrey</au><au>GRAHAM, Michael</au><au>CHUNG, Yip-Wah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, structure, and optical properties of Au―TiO2 composite thin films</atitle><jtitle>Thin solid films</jtitle><date>2010-12-30</date><risdate>2010</risdate><volume>519</volume><issue>5</issue><spage>1490</spage><epage>1494</epage><pages>1490-1494</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>Titanium dioxide (TiO2) films with varying concentrations of gold particles were synthesized using pulsed DC magnetron sputtering, with the intent to develop infrared reflecting films for use on cars and planes to reduce solar heat load. Under our deposition conditions, the films are smooth (RMS roughness on the order of 1.0-2.0nm) and consist of rutile TiO2 with embedded gold. The average gold particle diameter on the sample surface was found to change from 60 to 200nm as the volume fraction of gold in the films increased from 1.9 to 4.3% (3.5 to 7.9mol% Au). The maximum reflectance of these films in the infrared region (800-2500nm) is &gt;50%, compared with 30% for pure TiO2. The Maxwell-Garnett equation does not model the reflectance data very well, due to the relatively large gold particle size. Instead, by assuming that the contribution of gold particles to the reflectance response is proportional to their projected areal fraction in an effective medium approximation, we were able to fit the observed reflectance data quite well.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.tsf.2010.08.083</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2010-12, Vol.519 (5), p.1490-1494
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_861536172
source Elsevier ScienceDirect Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Deposition by sputtering
Exact sciences and technology
Gold
Infrared
Magnetron sputtering
Materials science
Mathematical analysis
Methods of deposition of films and coatings
film growth and epitaxy
Nanoscale materials and structures: fabrication and characterization
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of specific thin films
Other topics in nanoscale materials and structures
Particulate composites
Physics
Reflectance
Reflectivity
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
Thin films
Titanium dioxide
title Synthesis, structure, and optical properties of Au―TiO2 composite thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20structure,%20and%20optical%20properties%20of%20Au%E2%80%95TiO2%20composite%20thin%20films&rft.jtitle=Thin%20solid%20films&rft.au=RANADE,%20Alpana%20N&rft.date=2010-12-30&rft.volume=519&rft.issue=5&rft.spage=1490&rft.epage=1494&rft.pages=1490-1494&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2010.08.083&rft_dat=%3Cproquest_cross%3E861536172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861536172&rft_id=info:pmid/&rfr_iscdi=true