Facile solution synthesis and characterization of porous cubic-shaped superstructure of ZnAl2O4
Porous and cubic-shaped superstructure of ZnAl2O4 was successfully synthesized by a facile wet chemical solution-phase method. The structural properties of the samples were systematically investigated by X-ray powder diffraction (XRD), Brunauer-Emmet-Teller (BET), scanning electron microscopy (SEM),...
Gespeichert in:
Veröffentlicht in: | Materials letters 2011-01, Vol.65 (2), p.194-197 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Porous and cubic-shaped superstructure of ZnAl2O4 was successfully synthesized by a facile wet chemical solution-phase method. The structural properties of the samples were systematically investigated by X-ray powder diffraction (XRD), Brunauer-Emmet-Teller (BET), scanning electron microscopy (SEM), energy-dispersive spectra (EDS), and Fourier transform infrared spectroscopy (FT-IR) techniques. The characterization results revealed that the structure of the cubic-shaped ZnAl2O4 was an inverse spinel structure. The sample prepared by a solution-phase chemical method has a higher surface area and monomodal pore size distributions. Furthermore, the valence states and the surface chemical compositions of ZnAl2O4 were further identified by X-ray photoelectron spectroscopy (XPS). This study provides a simple method to prepare cubic-shaped ZnAl2O4 in large scale, which broadens their practical applications. |
---|---|
ISSN: | 0167-577X |
DOI: | 10.1016/j.matlet.2010.09.085 |