Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector
Abstract The use of scaffolds in skin tissue engineering is accompanied with low regeneration rates and high risk of infection. In this study, we activated an FDA-approved collagen scaffold for dermal regeneration by incorporation of copolymer-protected gene vectors (COPROGs) to induce a temporary r...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2011-03, Vol.32 (7), p.1996-2003 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2003 |
---|---|
container_issue | 7 |
container_start_page | 1996 |
container_title | Biomaterials |
container_volume | 32 |
creator | Reckhenrich, Ann K Hopfner, Ursula Krötz, Florian Zhang, Ziyang Koch, Christian Kremer, Mathias Machens, Hans-Günther Plank, Christian Egaña, José T |
description | Abstract The use of scaffolds in skin tissue engineering is accompanied with low regeneration rates and high risk of infection. In this study, we activated an FDA-approved collagen scaffold for dermal regeneration by incorporation of copolymer-protected gene vectors (COPROGs) to induce a temporary release of VEGF. In vitro results show that the presence of COPROGs did not affect the distribution, attachment, proliferation and viability of cells in the scaffold. A transient release of VEGF was observed for up to 3 weeks. Moreover a high amount of VEGF was also found in the cells and associated with the scaffold. In a full skin defect model in nude mice, VEGF levels were significantly increased compared to controls in VEGF gene activated scaffolds 14 d after implantation, but not in skin from the wound edge. Results showed an increased amount of non-adherent cells, especially erythrocytes, and von Willebrandt factor (vWF) and a yellow red appearance of gene activated scaffolds in relation to controls. This suggests the presence of leaky vessels. In this work we show that the bioactivation of collagen scaffolds with COPROGs presents a new technology that allows a local release of therapeutic proteins thus enhancing the regenerative potential in vivo. |
doi_str_mv | 10.1016/j.biomaterials.2010.11.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861534695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961210014614</els_id><sourcerecordid>840351625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-126d2673d6f9195d27662779a0af8891cc34de32a3497978bac355b02153e8363</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhoMo7uzqX5DGi156TCWdLw-CrusHLAh-nEMmqdaM3Z0x6RmZf2-aWUU8qKdUqOetKuotQh4CXQMF-WS73sQ0uhlzdENZM7okYE0Zu0VWoJVuhaHiNllR6FhrJLAzcl7KltY_7dhdcsYAhOFKr8j7FzE5P8eDm2OamtQ3AfPohqZ41_dpCKX5HucvjWumNLWHmGvKp10ajiPmdpfTjH7G0HzGCZtDjVO-R-70dS68f_NekE-vrj5evmmv371-e_n8uvWdMXMLTAYmFQ-yN2BEYEpKppRx1PVaG_CedwE5c7wzyii9cZ4LsaEMBEfNJb8gj0516xTf9lhmO8bicRjchGlfrJaV7KQR_yY7ygVItpCP_0qCVMA0N4xX9OkJ9TmVkrG3uxxHl48WqF18slv7u0928ckC2OpTFT-46bPfjBh-SX8aU4GXJwDrBg8Rsy0-4uQxxFy3bEOK_9fn2R9l_BCn6N3wFY9Ytmmfp0UDtjBL7YflYpaDgeVWJHT8B4o2vkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671283923</pqid></control><display><type>article</type><title>Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector</title><source>ScienceDirect</source><source>MEDLINE</source><creator>Reckhenrich, Ann K ; Hopfner, Ursula ; Krötz, Florian ; Zhang, Ziyang ; Koch, Christian ; Kremer, Mathias ; Machens, Hans-Günther ; Plank, Christian ; Egaña, José T</creator><creatorcontrib>Reckhenrich, Ann K ; Hopfner, Ursula ; Krötz, Florian ; Zhang, Ziyang ; Koch, Christian ; Kremer, Mathias ; Machens, Hans-Günther ; Plank, Christian ; Egaña, José T</creatorcontrib><description>Abstract The use of scaffolds in skin tissue engineering is accompanied with low regeneration rates and high risk of infection. In this study, we activated an FDA-approved collagen scaffold for dermal regeneration by incorporation of copolymer-protected gene vectors (COPROGs) to induce a temporary release of VEGF. In vitro results show that the presence of COPROGs did not affect the distribution, attachment, proliferation and viability of cells in the scaffold. A transient release of VEGF was observed for up to 3 weeks. Moreover a high amount of VEGF was also found in the cells and associated with the scaffold. In a full skin defect model in nude mice, VEGF levels were significantly increased compared to controls in VEGF gene activated scaffolds 14 d after implantation, but not in skin from the wound edge. Results showed an increased amount of non-adherent cells, especially erythrocytes, and von Willebrandt factor (vWF) and a yellow red appearance of gene activated scaffolds in relation to controls. This suggests the presence of leaky vessels. In this work we show that the bioactivation of collagen scaffolds with COPROGs presents a new technology that allows a local release of therapeutic proteins thus enhancing the regenerative potential in vivo.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2010.11.022</identifier><identifier>PMID: 21159378</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Activated ; Advanced Basic Science ; Angiogenesis ; Animals ; Biocompatibility ; Biomedical materials ; Collagen - chemistry ; Controlled drug release ; Dentistry ; Gene activated matrix ; Genes ; Genetic Vectors - chemistry ; Mathematical analysis ; Mice ; Mice, Nude ; Microscopy, Electron, Scanning ; Nanobiotechnology ; Nanotechnology ; NIH 3T3 Cells ; Non-viral gene therapy ; Polymers - chemistry ; Regeneration ; Scaffolds ; Skin - cytology ; Skin - metabolism ; Surgical implants ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; Wound healing</subject><ispartof>Biomaterials, 2011-03, Vol.32 (7), p.1996-2003</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Copyright © 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-126d2673d6f9195d27662779a0af8891cc34de32a3497978bac355b02153e8363</citedby><cites>FETCH-LOGICAL-c499t-126d2673d6f9195d27662779a0af8891cc34de32a3497978bac355b02153e8363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2010.11.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21159378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reckhenrich, Ann K</creatorcontrib><creatorcontrib>Hopfner, Ursula</creatorcontrib><creatorcontrib>Krötz, Florian</creatorcontrib><creatorcontrib>Zhang, Ziyang</creatorcontrib><creatorcontrib>Koch, Christian</creatorcontrib><creatorcontrib>Kremer, Mathias</creatorcontrib><creatorcontrib>Machens, Hans-Günther</creatorcontrib><creatorcontrib>Plank, Christian</creatorcontrib><creatorcontrib>Egaña, José T</creatorcontrib><title>Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The use of scaffolds in skin tissue engineering is accompanied with low regeneration rates and high risk of infection. In this study, we activated an FDA-approved collagen scaffold for dermal regeneration by incorporation of copolymer-protected gene vectors (COPROGs) to induce a temporary release of VEGF. In vitro results show that the presence of COPROGs did not affect the distribution, attachment, proliferation and viability of cells in the scaffold. A transient release of VEGF was observed for up to 3 weeks. Moreover a high amount of VEGF was also found in the cells and associated with the scaffold. In a full skin defect model in nude mice, VEGF levels were significantly increased compared to controls in VEGF gene activated scaffolds 14 d after implantation, but not in skin from the wound edge. Results showed an increased amount of non-adherent cells, especially erythrocytes, and von Willebrandt factor (vWF) and a yellow red appearance of gene activated scaffolds in relation to controls. This suggests the presence of leaky vessels. In this work we show that the bioactivation of collagen scaffolds with COPROGs presents a new technology that allows a local release of therapeutic proteins thus enhancing the regenerative potential in vivo.</description><subject>Activated</subject><subject>Advanced Basic Science</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Collagen - chemistry</subject><subject>Controlled drug release</subject><subject>Dentistry</subject><subject>Gene activated matrix</subject><subject>Genes</subject><subject>Genetic Vectors - chemistry</subject><subject>Mathematical analysis</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanobiotechnology</subject><subject>Nanotechnology</subject><subject>NIH 3T3 Cells</subject><subject>Non-viral gene therapy</subject><subject>Polymers - chemistry</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Skin - cytology</subject><subject>Skin - metabolism</subject><subject>Surgical implants</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Wound healing</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk2LFDEQhoMo7uzqX5DGi156TCWdLw-CrusHLAh-nEMmqdaM3Z0x6RmZf2-aWUU8qKdUqOetKuotQh4CXQMF-WS73sQ0uhlzdENZM7okYE0Zu0VWoJVuhaHiNllR6FhrJLAzcl7KltY_7dhdcsYAhOFKr8j7FzE5P8eDm2OamtQ3AfPohqZ41_dpCKX5HucvjWumNLWHmGvKp10ajiPmdpfTjH7G0HzGCZtDjVO-R-70dS68f_NekE-vrj5evmmv371-e_n8uvWdMXMLTAYmFQ-yN2BEYEpKppRx1PVaG_CedwE5c7wzyii9cZ4LsaEMBEfNJb8gj0516xTf9lhmO8bicRjchGlfrJaV7KQR_yY7ygVItpCP_0qCVMA0N4xX9OkJ9TmVkrG3uxxHl48WqF18slv7u0928ckC2OpTFT-46bPfjBh-SX8aU4GXJwDrBg8Rsy0-4uQxxFy3bEOK_9fn2R9l_BCn6N3wFY9Ytmmfp0UDtjBL7YflYpaDgeVWJHT8B4o2vkg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Reckhenrich, Ann K</creator><creator>Hopfner, Ursula</creator><creator>Krötz, Florian</creator><creator>Zhang, Ziyang</creator><creator>Koch, Christian</creator><creator>Kremer, Mathias</creator><creator>Machens, Hans-Günther</creator><creator>Plank, Christian</creator><creator>Egaña, José T</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>7U9</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20110301</creationdate><title>Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector</title><author>Reckhenrich, Ann K ; Hopfner, Ursula ; Krötz, Florian ; Zhang, Ziyang ; Koch, Christian ; Kremer, Mathias ; Machens, Hans-Günther ; Plank, Christian ; Egaña, José T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-126d2673d6f9195d27662779a0af8891cc34de32a3497978bac355b02153e8363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activated</topic><topic>Advanced Basic Science</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Collagen - chemistry</topic><topic>Controlled drug release</topic><topic>Dentistry</topic><topic>Gene activated matrix</topic><topic>Genes</topic><topic>Genetic Vectors - chemistry</topic><topic>Mathematical analysis</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanobiotechnology</topic><topic>Nanotechnology</topic><topic>NIH 3T3 Cells</topic><topic>Non-viral gene therapy</topic><topic>Polymers - chemistry</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Skin - cytology</topic><topic>Skin - metabolism</topic><topic>Surgical implants</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reckhenrich, Ann K</creatorcontrib><creatorcontrib>Hopfner, Ursula</creatorcontrib><creatorcontrib>Krötz, Florian</creatorcontrib><creatorcontrib>Zhang, Ziyang</creatorcontrib><creatorcontrib>Koch, Christian</creatorcontrib><creatorcontrib>Kremer, Mathias</creatorcontrib><creatorcontrib>Machens, Hans-Günther</creatorcontrib><creatorcontrib>Plank, Christian</creatorcontrib><creatorcontrib>Egaña, José T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reckhenrich, Ann K</au><au>Hopfner, Ursula</au><au>Krötz, Florian</au><au>Zhang, Ziyang</au><au>Koch, Christian</au><au>Kremer, Mathias</au><au>Machens, Hans-Günther</au><au>Plank, Christian</au><au>Egaña, José T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>32</volume><issue>7</issue><spage>1996</spage><epage>2003</epage><pages>1996-2003</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The use of scaffolds in skin tissue engineering is accompanied with low regeneration rates and high risk of infection. In this study, we activated an FDA-approved collagen scaffold for dermal regeneration by incorporation of copolymer-protected gene vectors (COPROGs) to induce a temporary release of VEGF. In vitro results show that the presence of COPROGs did not affect the distribution, attachment, proliferation and viability of cells in the scaffold. A transient release of VEGF was observed for up to 3 weeks. Moreover a high amount of VEGF was also found in the cells and associated with the scaffold. In a full skin defect model in nude mice, VEGF levels were significantly increased compared to controls in VEGF gene activated scaffolds 14 d after implantation, but not in skin from the wound edge. Results showed an increased amount of non-adherent cells, especially erythrocytes, and von Willebrandt factor (vWF) and a yellow red appearance of gene activated scaffolds in relation to controls. This suggests the presence of leaky vessels. In this work we show that the bioactivation of collagen scaffolds with COPROGs presents a new technology that allows a local release of therapeutic proteins thus enhancing the regenerative potential in vivo.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21159378</pmid><doi>10.1016/j.biomaterials.2010.11.022</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2011-03, Vol.32 (7), p.1996-2003 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_861534695 |
source | ScienceDirect; MEDLINE |
subjects | Activated Advanced Basic Science Angiogenesis Animals Biocompatibility Biomedical materials Collagen - chemistry Controlled drug release Dentistry Gene activated matrix Genes Genetic Vectors - chemistry Mathematical analysis Mice Mice, Nude Microscopy, Electron, Scanning Nanobiotechnology Nanotechnology NIH 3T3 Cells Non-viral gene therapy Polymers - chemistry Regeneration Scaffolds Skin - cytology Skin - metabolism Surgical implants Tissue Engineering - methods Tissue Scaffolds - chemistry Vascular Endothelial Growth Factor A - genetics Vascular Endothelial Growth Factor A - metabolism Wound healing |
title | Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioactivation%20of%20dermal%20scaffolds%20with%20a%20non-viral%20copolymer-protected%20gene%20vector&rft.jtitle=Biomaterials&rft.au=Reckhenrich,%20Ann%20K&rft.date=2011-03-01&rft.volume=32&rft.issue=7&rft.spage=1996&rft.epage=2003&rft.pages=1996-2003&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2010.11.022&rft_dat=%3Cproquest_cross%3E840351625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671283923&rft_id=info:pmid/21159378&rft_els_id=S0142961210014614&rfr_iscdi=true |