Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector

Abstract The use of scaffolds in skin tissue engineering is accompanied with low regeneration rates and high risk of infection. In this study, we activated an FDA-approved collagen scaffold for dermal regeneration by incorporation of copolymer-protected gene vectors (COPROGs) to induce a temporary r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2011-03, Vol.32 (7), p.1996-2003
Hauptverfasser: Reckhenrich, Ann K, Hopfner, Ursula, Krötz, Florian, Zhang, Ziyang, Koch, Christian, Kremer, Mathias, Machens, Hans-Günther, Plank, Christian, Egaña, José T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2003
container_issue 7
container_start_page 1996
container_title Biomaterials
container_volume 32
creator Reckhenrich, Ann K
Hopfner, Ursula
Krötz, Florian
Zhang, Ziyang
Koch, Christian
Kremer, Mathias
Machens, Hans-Günther
Plank, Christian
Egaña, José T
description Abstract The use of scaffolds in skin tissue engineering is accompanied with low regeneration rates and high risk of infection. In this study, we activated an FDA-approved collagen scaffold for dermal regeneration by incorporation of copolymer-protected gene vectors (COPROGs) to induce a temporary release of VEGF. In vitro results show that the presence of COPROGs did not affect the distribution, attachment, proliferation and viability of cells in the scaffold. A transient release of VEGF was observed for up to 3 weeks. Moreover a high amount of VEGF was also found in the cells and associated with the scaffold. In a full skin defect model in nude mice, VEGF levels were significantly increased compared to controls in VEGF gene activated scaffolds 14 d after implantation, but not in skin from the wound edge. Results showed an increased amount of non-adherent cells, especially erythrocytes, and von Willebrandt factor (vWF) and a yellow red appearance of gene activated scaffolds in relation to controls. This suggests the presence of leaky vessels. In this work we show that the bioactivation of collagen scaffolds with COPROGs presents a new technology that allows a local release of therapeutic proteins thus enhancing the regenerative potential in vivo.
doi_str_mv 10.1016/j.biomaterials.2010.11.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861534695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961210014614</els_id><sourcerecordid>840351625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-126d2673d6f9195d27662779a0af8891cc34de32a3497978bac355b02153e8363</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhoMo7uzqX5DGi156TCWdLw-CrusHLAh-nEMmqdaM3Z0x6RmZf2-aWUU8qKdUqOetKuotQh4CXQMF-WS73sQ0uhlzdENZM7okYE0Zu0VWoJVuhaHiNllR6FhrJLAzcl7KltY_7dhdcsYAhOFKr8j7FzE5P8eDm2OamtQ3AfPohqZ41_dpCKX5HucvjWumNLWHmGvKp10ajiPmdpfTjH7G0HzGCZtDjVO-R-70dS68f_NekE-vrj5evmmv371-e_n8uvWdMXMLTAYmFQ-yN2BEYEpKppRx1PVaG_CedwE5c7wzyii9cZ4LsaEMBEfNJb8gj0516xTf9lhmO8bicRjchGlfrJaV7KQR_yY7ygVItpCP_0qCVMA0N4xX9OkJ9TmVkrG3uxxHl48WqF18slv7u0928ckC2OpTFT-46bPfjBh-SX8aU4GXJwDrBg8Rsy0-4uQxxFy3bEOK_9fn2R9l_BCn6N3wFY9Ytmmfp0UDtjBL7YflYpaDgeVWJHT8B4o2vkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671283923</pqid></control><display><type>article</type><title>Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector</title><source>ScienceDirect</source><source>MEDLINE</source><creator>Reckhenrich, Ann K ; Hopfner, Ursula ; Krötz, Florian ; Zhang, Ziyang ; Koch, Christian ; Kremer, Mathias ; Machens, Hans-Günther ; Plank, Christian ; Egaña, José T</creator><creatorcontrib>Reckhenrich, Ann K ; Hopfner, Ursula ; Krötz, Florian ; Zhang, Ziyang ; Koch, Christian ; Kremer, Mathias ; Machens, Hans-Günther ; Plank, Christian ; Egaña, José T</creatorcontrib><description>Abstract The use of scaffolds in skin tissue engineering is accompanied with low regeneration rates and high risk of infection. In this study, we activated an FDA-approved collagen scaffold for dermal regeneration by incorporation of copolymer-protected gene vectors (COPROGs) to induce a temporary release of VEGF. In vitro results show that the presence of COPROGs did not affect the distribution, attachment, proliferation and viability of cells in the scaffold. A transient release of VEGF was observed for up to 3 weeks. Moreover a high amount of VEGF was also found in the cells and associated with the scaffold. In a full skin defect model in nude mice, VEGF levels were significantly increased compared to controls in VEGF gene activated scaffolds 14 d after implantation, but not in skin from the wound edge. Results showed an increased amount of non-adherent cells, especially erythrocytes, and von Willebrandt factor (vWF) and a yellow red appearance of gene activated scaffolds in relation to controls. This suggests the presence of leaky vessels. In this work we show that the bioactivation of collagen scaffolds with COPROGs presents a new technology that allows a local release of therapeutic proteins thus enhancing the regenerative potential in vivo.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2010.11.022</identifier><identifier>PMID: 21159378</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Activated ; Advanced Basic Science ; Angiogenesis ; Animals ; Biocompatibility ; Biomedical materials ; Collagen - chemistry ; Controlled drug release ; Dentistry ; Gene activated matrix ; Genes ; Genetic Vectors - chemistry ; Mathematical analysis ; Mice ; Mice, Nude ; Microscopy, Electron, Scanning ; Nanobiotechnology ; Nanotechnology ; NIH 3T3 Cells ; Non-viral gene therapy ; Polymers - chemistry ; Regeneration ; Scaffolds ; Skin - cytology ; Skin - metabolism ; Surgical implants ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; Wound healing</subject><ispartof>Biomaterials, 2011-03, Vol.32 (7), p.1996-2003</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Copyright © 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-126d2673d6f9195d27662779a0af8891cc34de32a3497978bac355b02153e8363</citedby><cites>FETCH-LOGICAL-c499t-126d2673d6f9195d27662779a0af8891cc34de32a3497978bac355b02153e8363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2010.11.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21159378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reckhenrich, Ann K</creatorcontrib><creatorcontrib>Hopfner, Ursula</creatorcontrib><creatorcontrib>Krötz, Florian</creatorcontrib><creatorcontrib>Zhang, Ziyang</creatorcontrib><creatorcontrib>Koch, Christian</creatorcontrib><creatorcontrib>Kremer, Mathias</creatorcontrib><creatorcontrib>Machens, Hans-Günther</creatorcontrib><creatorcontrib>Plank, Christian</creatorcontrib><creatorcontrib>Egaña, José T</creatorcontrib><title>Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The use of scaffolds in skin tissue engineering is accompanied with low regeneration rates and high risk of infection. In this study, we activated an FDA-approved collagen scaffold for dermal regeneration by incorporation of copolymer-protected gene vectors (COPROGs) to induce a temporary release of VEGF. In vitro results show that the presence of COPROGs did not affect the distribution, attachment, proliferation and viability of cells in the scaffold. A transient release of VEGF was observed for up to 3 weeks. Moreover a high amount of VEGF was also found in the cells and associated with the scaffold. In a full skin defect model in nude mice, VEGF levels were significantly increased compared to controls in VEGF gene activated scaffolds 14 d after implantation, but not in skin from the wound edge. Results showed an increased amount of non-adherent cells, especially erythrocytes, and von Willebrandt factor (vWF) and a yellow red appearance of gene activated scaffolds in relation to controls. This suggests the presence of leaky vessels. In this work we show that the bioactivation of collagen scaffolds with COPROGs presents a new technology that allows a local release of therapeutic proteins thus enhancing the regenerative potential in vivo.</description><subject>Activated</subject><subject>Advanced Basic Science</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Collagen - chemistry</subject><subject>Controlled drug release</subject><subject>Dentistry</subject><subject>Gene activated matrix</subject><subject>Genes</subject><subject>Genetic Vectors - chemistry</subject><subject>Mathematical analysis</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanobiotechnology</subject><subject>Nanotechnology</subject><subject>NIH 3T3 Cells</subject><subject>Non-viral gene therapy</subject><subject>Polymers - chemistry</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Skin - cytology</subject><subject>Skin - metabolism</subject><subject>Surgical implants</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Wound healing</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk2LFDEQhoMo7uzqX5DGi156TCWdLw-CrusHLAh-nEMmqdaM3Z0x6RmZf2-aWUU8qKdUqOetKuotQh4CXQMF-WS73sQ0uhlzdENZM7okYE0Zu0VWoJVuhaHiNllR6FhrJLAzcl7KltY_7dhdcsYAhOFKr8j7FzE5P8eDm2OamtQ3AfPohqZ41_dpCKX5HucvjWumNLWHmGvKp10ajiPmdpfTjH7G0HzGCZtDjVO-R-70dS68f_NekE-vrj5evmmv371-e_n8uvWdMXMLTAYmFQ-yN2BEYEpKppRx1PVaG_CedwE5c7wzyii9cZ4LsaEMBEfNJb8gj0516xTf9lhmO8bicRjchGlfrJaV7KQR_yY7ygVItpCP_0qCVMA0N4xX9OkJ9TmVkrG3uxxHl48WqF18slv7u0928ckC2OpTFT-46bPfjBh-SX8aU4GXJwDrBg8Rsy0-4uQxxFy3bEOK_9fn2R9l_BCn6N3wFY9Ytmmfp0UDtjBL7YflYpaDgeVWJHT8B4o2vkg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Reckhenrich, Ann K</creator><creator>Hopfner, Ursula</creator><creator>Krötz, Florian</creator><creator>Zhang, Ziyang</creator><creator>Koch, Christian</creator><creator>Kremer, Mathias</creator><creator>Machens, Hans-Günther</creator><creator>Plank, Christian</creator><creator>Egaña, José T</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>7U9</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20110301</creationdate><title>Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector</title><author>Reckhenrich, Ann K ; Hopfner, Ursula ; Krötz, Florian ; Zhang, Ziyang ; Koch, Christian ; Kremer, Mathias ; Machens, Hans-Günther ; Plank, Christian ; Egaña, José T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-126d2673d6f9195d27662779a0af8891cc34de32a3497978bac355b02153e8363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activated</topic><topic>Advanced Basic Science</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Collagen - chemistry</topic><topic>Controlled drug release</topic><topic>Dentistry</topic><topic>Gene activated matrix</topic><topic>Genes</topic><topic>Genetic Vectors - chemistry</topic><topic>Mathematical analysis</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanobiotechnology</topic><topic>Nanotechnology</topic><topic>NIH 3T3 Cells</topic><topic>Non-viral gene therapy</topic><topic>Polymers - chemistry</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Skin - cytology</topic><topic>Skin - metabolism</topic><topic>Surgical implants</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reckhenrich, Ann K</creatorcontrib><creatorcontrib>Hopfner, Ursula</creatorcontrib><creatorcontrib>Krötz, Florian</creatorcontrib><creatorcontrib>Zhang, Ziyang</creatorcontrib><creatorcontrib>Koch, Christian</creatorcontrib><creatorcontrib>Kremer, Mathias</creatorcontrib><creatorcontrib>Machens, Hans-Günther</creatorcontrib><creatorcontrib>Plank, Christian</creatorcontrib><creatorcontrib>Egaña, José T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reckhenrich, Ann K</au><au>Hopfner, Ursula</au><au>Krötz, Florian</au><au>Zhang, Ziyang</au><au>Koch, Christian</au><au>Kremer, Mathias</au><au>Machens, Hans-Günther</au><au>Plank, Christian</au><au>Egaña, José T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>32</volume><issue>7</issue><spage>1996</spage><epage>2003</epage><pages>1996-2003</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The use of scaffolds in skin tissue engineering is accompanied with low regeneration rates and high risk of infection. In this study, we activated an FDA-approved collagen scaffold for dermal regeneration by incorporation of copolymer-protected gene vectors (COPROGs) to induce a temporary release of VEGF. In vitro results show that the presence of COPROGs did not affect the distribution, attachment, proliferation and viability of cells in the scaffold. A transient release of VEGF was observed for up to 3 weeks. Moreover a high amount of VEGF was also found in the cells and associated with the scaffold. In a full skin defect model in nude mice, VEGF levels were significantly increased compared to controls in VEGF gene activated scaffolds 14 d after implantation, but not in skin from the wound edge. Results showed an increased amount of non-adherent cells, especially erythrocytes, and von Willebrandt factor (vWF) and a yellow red appearance of gene activated scaffolds in relation to controls. This suggests the presence of leaky vessels. In this work we show that the bioactivation of collagen scaffolds with COPROGs presents a new technology that allows a local release of therapeutic proteins thus enhancing the regenerative potential in vivo.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21159378</pmid><doi>10.1016/j.biomaterials.2010.11.022</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2011-03, Vol.32 (7), p.1996-2003
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_861534695
source ScienceDirect; MEDLINE
subjects Activated
Advanced Basic Science
Angiogenesis
Animals
Biocompatibility
Biomedical materials
Collagen - chemistry
Controlled drug release
Dentistry
Gene activated matrix
Genes
Genetic Vectors - chemistry
Mathematical analysis
Mice
Mice, Nude
Microscopy, Electron, Scanning
Nanobiotechnology
Nanotechnology
NIH 3T3 Cells
Non-viral gene therapy
Polymers - chemistry
Regeneration
Scaffolds
Skin - cytology
Skin - metabolism
Surgical implants
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
Wound healing
title Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioactivation%20of%20dermal%20scaffolds%20with%20a%20non-viral%20copolymer-protected%20gene%20vector&rft.jtitle=Biomaterials&rft.au=Reckhenrich,%20Ann%20K&rft.date=2011-03-01&rft.volume=32&rft.issue=7&rft.spage=1996&rft.epage=2003&rft.pages=1996-2003&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2010.11.022&rft_dat=%3Cproquest_cross%3E840351625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671283923&rft_id=info:pmid/21159378&rft_els_id=S0142961210014614&rfr_iscdi=true