Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates

The classical and shear deformation beam and plate theories are reformulated using the nonlocal differential constitutive relations of Eringen and the von Kármán nonlinear strains. The equations of equilibrium of the nonlocal beam theories are derived, and virtual work statements in terms of the gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2010-11, Vol.48 (11), p.1507-1518
1. Verfasser: Reddy, J.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical and shear deformation beam and plate theories are reformulated using the nonlocal differential constitutive relations of Eringen and the von Kármán nonlinear strains. The equations of equilibrium of the nonlocal beam theories are derived, and virtual work statements in terms of the generalized displacements are presented for use with the finite element model development. The governing equilibrium equations of the classical and first-order shear deformation theories of plates with the von Kármán nonlinearity are also formulated. The theoretical development presented herein should serve to obtain the finite element results and determine the effect of the geometric nonlinearity and nonlocal constitutive relations on bending response.
ISSN:0020-7225
1879-2197
DOI:10.1016/j.ijengsci.2010.09.020