Do the O2 Schumann–Runge Bands Participate in keV Collision-Induced Dissociation Experiments?

In high-energy (keV) CID experiments, oxygen has the unique ability to enhance specific ion fragmentation pathways that lie within a relatively narrow band of activation energy. It has been previously proposed that this oxygen-enhanced dissociation phenomenon is due to the participation of the (Schu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Mass Spectrometry 2011, Vol.22 (1), p.75-80
Hauptverfasser: Lin, Yawei, Mayer, Paul M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 75
container_title Journal of the American Society for Mass Spectrometry
container_volume 22
creator Lin, Yawei
Mayer, Paul M.
description In high-energy (keV) CID experiments, oxygen has the unique ability to enhance specific ion fragmentation pathways that lie within a relatively narrow band of activation energy. It has been previously proposed that this oxygen-enhanced dissociation phenomenon is due to the participation of the (Schumann–Runge) system in the collision complex. During the collision, oxygen is first excited to its state before it returns this energy to the projectile ion. This energy drives the nonstatistical dissociation of the projectile provided there is an energetically accessible pathway in resonance with the absorbed radiation. To probe the validity of this hypothesis, a modified VG-ZAB mass spectrometer was used to observe the photon emissions from keV collisions of a selection of projectile ions with O 2 target gas. By studying the resulting collision-induced emission (CIE) spectra, a second potential mechanism came to light, one that involves the near-isoenergetic O 2 +. A 2 Π u →X 2 Π g state transition.
doi_str_mv 10.1007/s13361-010-0011-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_861206018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951055809</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156x-3b7c3ccdcf9c7c951ce5014022e26bc0a74852839928697ad210488b50d08f003</originalsourceid><addsrcrecordid>eNpd0d1qHCEUB3ApKc1H-wC5CUIoubI9R8dRr0K6m7aBQEq_bsV13MRk1pmMM7C9yzv0DfMkNeyWlF4p-sPjOX9CDhHeIYB6n1GIGhkgMABEtn5B9lArwxC52Cl7qCoGAuQu2c_5thgFRr0iuxwrxWVV7xE77-h4E-gVp9_8zbRyKT0-_P46petAP7jUZPrFDWP0sXdjoDHRu_CTzrq2jTl2iV2kZvKhofOYc-ejG8shPV_3YYirkMZ8-pq8XLo2hzfb9YD8-Hj-ffaZXV59upidXbIeZb1mYqG88L7xS-OVNxJ9kIAVcB54vfDgVKUl18IYrmujXMNLb1ovJDSglwDigJxs3u2H7n4KebSrmH1oW5dCN2Wra-RQA-oij_-Tt900pPI5i6UwSKnBFHW0VdNiFRrbl4bc8Mv-nVwBb7fAZe_a5eCSj_nZCSM5QFUc37hcrspUh3_KgX2K0W5itCVG-xSjXYs_Ky6MBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951055809</pqid></control><display><type>article</type><title>Do the O2 Schumann–Runge Bands Participate in keV Collision-Induced Dissociation Experiments?</title><source>Springer Nature - Complete Springer Journals</source><creator>Lin, Yawei ; Mayer, Paul M.</creator><creatorcontrib>Lin, Yawei ; Mayer, Paul M.</creatorcontrib><description>In high-energy (keV) CID experiments, oxygen has the unique ability to enhance specific ion fragmentation pathways that lie within a relatively narrow band of activation energy. It has been previously proposed that this oxygen-enhanced dissociation phenomenon is due to the participation of the (Schumann–Runge) system in the collision complex. During the collision, oxygen is first excited to its state before it returns this energy to the projectile ion. This energy drives the nonstatistical dissociation of the projectile provided there is an energetically accessible pathway in resonance with the absorbed radiation. To probe the validity of this hypothesis, a modified VG-ZAB mass spectrometer was used to observe the photon emissions from keV collisions of a selection of projectile ions with O 2 target gas. By studying the resulting collision-induced emission (CIE) spectra, a second potential mechanism came to light, one that involves the near-isoenergetic O 2 +. A 2 Π u →X 2 Π g state transition.</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1007/s13361-010-0011-x</identifier><identifier>PMID: 21472546</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Analytical Chemistry ; Bioinformatics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Collision complexes ; Emission analysis ; Energy of dissociation ; Exact sciences and technology ; Mass spectrometry ; Organic Chemistry ; Oxygen ; Proteomics ; Reactivity and mechanisms ; Research Article ; Spectral emissivity</subject><ispartof>Journal of the American Society for Mass Spectrometry, 2011, Vol.22 (1), p.75-80</ispartof><rights>American Society of Mass Spectrometry 2011</rights><rights>2015 INIST-CNRS</rights><rights>American Society for Mass Spectrometry, 2011</rights><rights>Journal of The American Society for Mass Spectrometry is a copyright of Springer, 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p156x-3b7c3ccdcf9c7c951ce5014022e26bc0a74852839928697ad210488b50d08f003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13361-010-0011-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13361-010-0011-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23952004$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21472546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Yawei</creatorcontrib><creatorcontrib>Mayer, Paul M.</creatorcontrib><title>Do the O2 Schumann–Runge Bands Participate in keV Collision-Induced Dissociation Experiments?</title><title>Journal of the American Society for Mass Spectrometry</title><addtitle>J. Am. Soc. Mass Spectrom</addtitle><addtitle>J Am Soc Mass Spectrom</addtitle><description>In high-energy (keV) CID experiments, oxygen has the unique ability to enhance specific ion fragmentation pathways that lie within a relatively narrow band of activation energy. It has been previously proposed that this oxygen-enhanced dissociation phenomenon is due to the participation of the (Schumann–Runge) system in the collision complex. During the collision, oxygen is first excited to its state before it returns this energy to the projectile ion. This energy drives the nonstatistical dissociation of the projectile provided there is an energetically accessible pathway in resonance with the absorbed radiation. To probe the validity of this hypothesis, a modified VG-ZAB mass spectrometer was used to observe the photon emissions from keV collisions of a selection of projectile ions with O 2 target gas. By studying the resulting collision-induced emission (CIE) spectra, a second potential mechanism came to light, one that involves the near-isoenergetic O 2 +. A 2 Π u →X 2 Π g state transition.</description><subject>Analytical Chemistry</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Collision complexes</subject><subject>Emission analysis</subject><subject>Energy of dissociation</subject><subject>Exact sciences and technology</subject><subject>Mass spectrometry</subject><subject>Organic Chemistry</subject><subject>Oxygen</subject><subject>Proteomics</subject><subject>Reactivity and mechanisms</subject><subject>Research Article</subject><subject>Spectral emissivity</subject><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0d1qHCEUB3ApKc1H-wC5CUIoubI9R8dRr0K6m7aBQEq_bsV13MRk1pmMM7C9yzv0DfMkNeyWlF4p-sPjOX9CDhHeIYB6n1GIGhkgMABEtn5B9lArwxC52Cl7qCoGAuQu2c_5thgFRr0iuxwrxWVV7xE77-h4E-gVp9_8zbRyKT0-_P46petAP7jUZPrFDWP0sXdjoDHRu_CTzrq2jTl2iV2kZvKhofOYc-ejG8shPV_3YYirkMZ8-pq8XLo2hzfb9YD8-Hj-ffaZXV59upidXbIeZb1mYqG88L7xS-OVNxJ9kIAVcB54vfDgVKUl18IYrmujXMNLb1ovJDSglwDigJxs3u2H7n4KebSrmH1oW5dCN2Wra-RQA-oij_-Tt900pPI5i6UwSKnBFHW0VdNiFRrbl4bc8Mv-nVwBb7fAZe_a5eCSj_nZCSM5QFUc37hcrspUh3_KgX2K0W5itCVG-xSjXYs_Ky6MBQ</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Lin, Yawei</creator><creator>Mayer, Paul M.</creator><general>Springer-Verlag</general><general>Elsevier</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2011</creationdate><title>Do the O2 Schumann–Runge Bands Participate in keV Collision-Induced Dissociation Experiments?</title><author>Lin, Yawei ; Mayer, Paul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156x-3b7c3ccdcf9c7c951ce5014022e26bc0a74852839928697ad210488b50d08f003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical Chemistry</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Collision complexes</topic><topic>Emission analysis</topic><topic>Energy of dissociation</topic><topic>Exact sciences and technology</topic><topic>Mass spectrometry</topic><topic>Organic Chemistry</topic><topic>Oxygen</topic><topic>Proteomics</topic><topic>Reactivity and mechanisms</topic><topic>Research Article</topic><topic>Spectral emissivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yawei</creatorcontrib><creatorcontrib>Mayer, Paul M.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yawei</au><au>Mayer, Paul M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do the O2 Schumann–Runge Bands Participate in keV Collision-Induced Dissociation Experiments?</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><stitle>J. Am. Soc. Mass Spectrom</stitle><addtitle>J Am Soc Mass Spectrom</addtitle><date>2011</date><risdate>2011</risdate><volume>22</volume><issue>1</issue><spage>75</spage><epage>80</epage><pages>75-80</pages><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>In high-energy (keV) CID experiments, oxygen has the unique ability to enhance specific ion fragmentation pathways that lie within a relatively narrow band of activation energy. It has been previously proposed that this oxygen-enhanced dissociation phenomenon is due to the participation of the (Schumann–Runge) system in the collision complex. During the collision, oxygen is first excited to its state before it returns this energy to the projectile ion. This energy drives the nonstatistical dissociation of the projectile provided there is an energetically accessible pathway in resonance with the absorbed radiation. To probe the validity of this hypothesis, a modified VG-ZAB mass spectrometer was used to observe the photon emissions from keV collisions of a selection of projectile ions with O 2 target gas. By studying the resulting collision-induced emission (CIE) spectra, a second potential mechanism came to light, one that involves the near-isoenergetic O 2 +. A 2 Π u →X 2 Π g state transition.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>21472546</pmid><doi>10.1007/s13361-010-0011-x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-0305
ispartof Journal of the American Society for Mass Spectrometry, 2011, Vol.22 (1), p.75-80
issn 1044-0305
1879-1123
language eng
recordid cdi_proquest_miscellaneous_861206018
source Springer Nature - Complete Springer Journals
subjects Analytical Chemistry
Bioinformatics
Biotechnology
Chemistry
Chemistry and Materials Science
Collision complexes
Emission analysis
Energy of dissociation
Exact sciences and technology
Mass spectrometry
Organic Chemistry
Oxygen
Proteomics
Reactivity and mechanisms
Research Article
Spectral emissivity
title Do the O2 Schumann–Runge Bands Participate in keV Collision-Induced Dissociation Experiments?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20the%20O2%20Schumann%E2%80%93Runge%20Bands%20Participate%20in%20keV%20Collision-Induced%20Dissociation%20Experiments?&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Lin,%20Yawei&rft.date=2011&rft.volume=22&rft.issue=1&rft.spage=75&rft.epage=80&rft.pages=75-80&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1007/s13361-010-0011-x&rft_dat=%3Cproquest_pubme%3E1951055809%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951055809&rft_id=info:pmid/21472546&rfr_iscdi=true