Gate-controlled guiding of electrons in graphene

Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronic systems, including the magnetic focusing 1 and electrostatic lensing 2 of electrons. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogues...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2011-04, Vol.6 (4), p.222-225
Hauptverfasser: Williams, J. R., Low, Tony, Lundstrom, M. S., Marcus, C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue 4
container_start_page 222
container_title Nature nanotechnology
container_volume 6
creator Williams, J. R.
Low, Tony
Lundstrom, M. S.
Marcus, C. M.
description Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronic systems, including the magnetic focusing 1 and electrostatic lensing 2 of electrons. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogues of optical devices with both positive and negative indices of refraction 3 . Here, we use the gate-controlled density of both p and n carrier types in graphene to demonstrate the electronic analogue of fibre-optic guiding 4 , 5 , 6 , 7 , 8 . Two basic effects are investigated: bipolar p–n junction guiding, based on the principle of angle-selective transmission through the interface between the graphene and the p–n junction; and unipolar fibre-optic guiding, using total internal reflection controlled by carrier density. We also demonstrate modulation of the guiding efficiency through gating, and comparison of these data with numerical simulations indicates that guiding performance is limited by the roughness of the interface. The development of p–n and fibre-optic guiding in graphene may lead to electrically reconfigurable wiring in high-mobility devices. Gate control of positive and negative carriers in graphene is used to guide current in a manner analogous to the guiding of light by an optical fibre.
doi_str_mv 10.1038/nnano.2011.3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_860882957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340733321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-1dd92081bcd7b2b97948ae7384c020cb8bf5d670e9d5bd6536990503246bebd83</originalsourceid><addsrcrecordid>eNpt0M1LwzAYBvAgipvTm2cpXrzYmY-mSY4ydAoDL3oOTfK2dnTJTNaD_72dmxPEU0Ly43lfHoQuCZ4SzOSd95UPU4oJmbIjNCaikDljih8f7lKM0FlKS4w5VbQ4RSNKGBFS4THC82oDuQ1-E0PXgcuavnWtb7JQZ9CBHZ59ylqfNbFav4OHc3RSV12Ci_05QW-PD6-zp3zxMn-e3S9yyzjf5MQ5RbEkxjphqFFCFbICwWRhMcXWSFNzVwoMynHjSs5KpTDHjBalAeMkm6CbXe46ho8e0kav2mSh6yoPoU9allhKqrgY5PUfuQx99MNyA-KUcMzLAd3ukI0hpQi1Xsd2VcVPTbDe9qi_e9TbHjUb-NU-szcrcAf8U9wA8h1Iw5dvIP4O_TfwCza7fFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865215056</pqid></control><display><type>article</type><title>Gate-controlled guiding of electrons in graphene</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Williams, J. R. ; Low, Tony ; Lundstrom, M. S. ; Marcus, C. M.</creator><creatorcontrib>Williams, J. R. ; Low, Tony ; Lundstrom, M. S. ; Marcus, C. M.</creatorcontrib><description>Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronic systems, including the magnetic focusing 1 and electrostatic lensing 2 of electrons. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogues of optical devices with both positive and negative indices of refraction 3 . Here, we use the gate-controlled density of both p and n carrier types in graphene to demonstrate the electronic analogue of fibre-optic guiding 4 , 5 , 6 , 7 , 8 . Two basic effects are investigated: bipolar p–n junction guiding, based on the principle of angle-selective transmission through the interface between the graphene and the p–n junction; and unipolar fibre-optic guiding, using total internal reflection controlled by carrier density. We also demonstrate modulation of the guiding efficiency through gating, and comparison of these data with numerical simulations indicates that guiding performance is limited by the roughness of the interface. The development of p–n and fibre-optic guiding in graphene may lead to electrically reconfigurable wiring in high-mobility devices. Gate control of positive and negative carriers in graphene is used to guide current in a manner analogous to the guiding of light by an optical fibre.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2011.3</identifier><identifier>PMID: 21317890</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/357/918 ; 639/925/357/918/1052 ; Chemistry and Materials Science ; Graphene ; letter ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Optics ; Simulation</subject><ispartof>Nature nanotechnology, 2011-04, Vol.6 (4), p.222-225</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-1dd92081bcd7b2b97948ae7384c020cb8bf5d670e9d5bd6536990503246bebd83</citedby><cites>FETCH-LOGICAL-c355t-1dd92081bcd7b2b97948ae7384c020cb8bf5d670e9d5bd6536990503246bebd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21317890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, J. R.</creatorcontrib><creatorcontrib>Low, Tony</creatorcontrib><creatorcontrib>Lundstrom, M. S.</creatorcontrib><creatorcontrib>Marcus, C. M.</creatorcontrib><title>Gate-controlled guiding of electrons in graphene</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronic systems, including the magnetic focusing 1 and electrostatic lensing 2 of electrons. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogues of optical devices with both positive and negative indices of refraction 3 . Here, we use the gate-controlled density of both p and n carrier types in graphene to demonstrate the electronic analogue of fibre-optic guiding 4 , 5 , 6 , 7 , 8 . Two basic effects are investigated: bipolar p–n junction guiding, based on the principle of angle-selective transmission through the interface between the graphene and the p–n junction; and unipolar fibre-optic guiding, using total internal reflection controlled by carrier density. We also demonstrate modulation of the guiding efficiency through gating, and comparison of these data with numerical simulations indicates that guiding performance is limited by the roughness of the interface. The development of p–n and fibre-optic guiding in graphene may lead to electrically reconfigurable wiring in high-mobility devices. Gate control of positive and negative carriers in graphene is used to guide current in a manner analogous to the guiding of light by an optical fibre.</description><subject>639/925/357/918</subject><subject>639/925/357/918/1052</subject><subject>Chemistry and Materials Science</subject><subject>Graphene</subject><subject>letter</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optics</subject><subject>Simulation</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpt0M1LwzAYBvAgipvTm2cpXrzYmY-mSY4ydAoDL3oOTfK2dnTJTNaD_72dmxPEU0Ly43lfHoQuCZ4SzOSd95UPU4oJmbIjNCaikDljih8f7lKM0FlKS4w5VbQ4RSNKGBFS4THC82oDuQ1-E0PXgcuavnWtb7JQZ9CBHZ59ylqfNbFav4OHc3RSV12Ci_05QW-PD6-zp3zxMn-e3S9yyzjf5MQ5RbEkxjphqFFCFbICwWRhMcXWSFNzVwoMynHjSs5KpTDHjBalAeMkm6CbXe46ho8e0kav2mSh6yoPoU9allhKqrgY5PUfuQx99MNyA-KUcMzLAd3ukI0hpQi1Xsd2VcVPTbDe9qi_e9TbHjUb-NU-szcrcAf8U9wA8h1Iw5dvIP4O_TfwCza7fFM</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Williams, J. R.</creator><creator>Low, Tony</creator><creator>Lundstrom, M. S.</creator><creator>Marcus, C. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20110401</creationdate><title>Gate-controlled guiding of electrons in graphene</title><author>Williams, J. R. ; Low, Tony ; Lundstrom, M. S. ; Marcus, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-1dd92081bcd7b2b97948ae7384c020cb8bf5d670e9d5bd6536990503246bebd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/925/357/918</topic><topic>639/925/357/918/1052</topic><topic>Chemistry and Materials Science</topic><topic>Graphene</topic><topic>letter</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, J. R.</creatorcontrib><creatorcontrib>Low, Tony</creatorcontrib><creatorcontrib>Lundstrom, M. S.</creatorcontrib><creatorcontrib>Marcus, C. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, J. R.</au><au>Low, Tony</au><au>Lundstrom, M. S.</au><au>Marcus, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate-controlled guiding of electrons in graphene</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>6</volume><issue>4</issue><spage>222</spage><epage>225</epage><pages>222-225</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronic systems, including the magnetic focusing 1 and electrostatic lensing 2 of electrons. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogues of optical devices with both positive and negative indices of refraction 3 . Here, we use the gate-controlled density of both p and n carrier types in graphene to demonstrate the electronic analogue of fibre-optic guiding 4 , 5 , 6 , 7 , 8 . Two basic effects are investigated: bipolar p–n junction guiding, based on the principle of angle-selective transmission through the interface between the graphene and the p–n junction; and unipolar fibre-optic guiding, using total internal reflection controlled by carrier density. We also demonstrate modulation of the guiding efficiency through gating, and comparison of these data with numerical simulations indicates that guiding performance is limited by the roughness of the interface. The development of p–n and fibre-optic guiding in graphene may lead to electrically reconfigurable wiring in high-mobility devices. Gate control of positive and negative carriers in graphene is used to guide current in a manner analogous to the guiding of light by an optical fibre.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21317890</pmid><doi>10.1038/nnano.2011.3</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2011-04, Vol.6 (4), p.222-225
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_860882957
source Nature; Alma/SFX Local Collection
subjects 639/925/357/918
639/925/357/918/1052
Chemistry and Materials Science
Graphene
letter
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Optics
Simulation
title Gate-controlled guiding of electrons in graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate-controlled%20guiding%20of%20electrons%20in%20graphene&rft.jtitle=Nature%20nanotechnology&rft.au=Williams,%20J.%20R.&rft.date=2011-04-01&rft.volume=6&rft.issue=4&rft.spage=222&rft.epage=225&rft.pages=222-225&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2011.3&rft_dat=%3Cproquest_cross%3E2340733321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865215056&rft_id=info:pmid/21317890&rfr_iscdi=true