Gate-controlled guiding of electrons in graphene
Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronic systems, including the magnetic focusing 1 and electrostatic lensing 2 of electrons. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogues...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2011-04, Vol.6 (4), p.222-225 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | 4 |
container_start_page | 222 |
container_title | Nature nanotechnology |
container_volume | 6 |
creator | Williams, J. R. Low, Tony Lundstrom, M. S. Marcus, C. M. |
description | Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronic systems, including the magnetic focusing
1
and electrostatic lensing
2
of electrons. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogues of optical devices with both positive and negative indices of refraction
3
. Here, we use the gate-controlled density of both p and n carrier types in graphene to demonstrate the electronic analogue of fibre-optic guiding
4
,
5
,
6
,
7
,
8
. Two basic effects are investigated: bipolar p–n junction guiding, based on the principle of angle-selective transmission through the interface between the graphene and the p–n junction; and unipolar fibre-optic guiding, using total internal reflection controlled by carrier density. We also demonstrate modulation of the guiding efficiency through gating, and comparison of these data with numerical simulations indicates that guiding performance is limited by the roughness of the interface. The development of p–n and fibre-optic guiding in graphene may lead to electrically reconfigurable wiring in high-mobility devices.
Gate control of positive and negative carriers in graphene is used to guide current in a manner analogous to the guiding of light by an optical fibre. |
doi_str_mv | 10.1038/nnano.2011.3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_860882957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340733321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-1dd92081bcd7b2b97948ae7384c020cb8bf5d670e9d5bd6536990503246bebd83</originalsourceid><addsrcrecordid>eNpt0M1LwzAYBvAgipvTm2cpXrzYmY-mSY4ydAoDL3oOTfK2dnTJTNaD_72dmxPEU0Ly43lfHoQuCZ4SzOSd95UPU4oJmbIjNCaikDljih8f7lKM0FlKS4w5VbQ4RSNKGBFS4THC82oDuQ1-E0PXgcuavnWtb7JQZ9CBHZ59ylqfNbFav4OHc3RSV12Ci_05QW-PD6-zp3zxMn-e3S9yyzjf5MQ5RbEkxjphqFFCFbICwWRhMcXWSFNzVwoMynHjSs5KpTDHjBalAeMkm6CbXe46ho8e0kav2mSh6yoPoU9allhKqrgY5PUfuQx99MNyA-KUcMzLAd3ukI0hpQi1Xsd2VcVPTbDe9qi_e9TbHjUb-NU-szcrcAf8U9wA8h1Iw5dvIP4O_TfwCza7fFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865215056</pqid></control><display><type>article</type><title>Gate-controlled guiding of electrons in graphene</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Williams, J. R. ; Low, Tony ; Lundstrom, M. S. ; Marcus, C. M.</creator><creatorcontrib>Williams, J. R. ; Low, Tony ; Lundstrom, M. S. ; Marcus, C. M.</creatorcontrib><description>Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronic systems, including the magnetic focusing
1
and electrostatic lensing
2
of electrons. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogues of optical devices with both positive and negative indices of refraction
3
. Here, we use the gate-controlled density of both p and n carrier types in graphene to demonstrate the electronic analogue of fibre-optic guiding
4
,
5
,
6
,
7
,
8
. Two basic effects are investigated: bipolar p–n junction guiding, based on the principle of angle-selective transmission through the interface between the graphene and the p–n junction; and unipolar fibre-optic guiding, using total internal reflection controlled by carrier density. We also demonstrate modulation of the guiding efficiency through gating, and comparison of these data with numerical simulations indicates that guiding performance is limited by the roughness of the interface. The development of p–n and fibre-optic guiding in graphene may lead to electrically reconfigurable wiring in high-mobility devices.
Gate control of positive and negative carriers in graphene is used to guide current in a manner analogous to the guiding of light by an optical fibre.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2011.3</identifier><identifier>PMID: 21317890</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/357/918 ; 639/925/357/918/1052 ; Chemistry and Materials Science ; Graphene ; letter ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Optics ; Simulation</subject><ispartof>Nature nanotechnology, 2011-04, Vol.6 (4), p.222-225</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-1dd92081bcd7b2b97948ae7384c020cb8bf5d670e9d5bd6536990503246bebd83</citedby><cites>FETCH-LOGICAL-c355t-1dd92081bcd7b2b97948ae7384c020cb8bf5d670e9d5bd6536990503246bebd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21317890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, J. R.</creatorcontrib><creatorcontrib>Low, Tony</creatorcontrib><creatorcontrib>Lundstrom, M. S.</creatorcontrib><creatorcontrib>Marcus, C. M.</creatorcontrib><title>Gate-controlled guiding of electrons in graphene</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronic systems, including the magnetic focusing
1
and electrostatic lensing
2
of electrons. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogues of optical devices with both positive and negative indices of refraction
3
. Here, we use the gate-controlled density of both p and n carrier types in graphene to demonstrate the electronic analogue of fibre-optic guiding
4
,
5
,
6
,
7
,
8
. Two basic effects are investigated: bipolar p–n junction guiding, based on the principle of angle-selective transmission through the interface between the graphene and the p–n junction; and unipolar fibre-optic guiding, using total internal reflection controlled by carrier density. We also demonstrate modulation of the guiding efficiency through gating, and comparison of these data with numerical simulations indicates that guiding performance is limited by the roughness of the interface. The development of p–n and fibre-optic guiding in graphene may lead to electrically reconfigurable wiring in high-mobility devices.
Gate control of positive and negative carriers in graphene is used to guide current in a manner analogous to the guiding of light by an optical fibre.</description><subject>639/925/357/918</subject><subject>639/925/357/918/1052</subject><subject>Chemistry and Materials Science</subject><subject>Graphene</subject><subject>letter</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optics</subject><subject>Simulation</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpt0M1LwzAYBvAgipvTm2cpXrzYmY-mSY4ydAoDL3oOTfK2dnTJTNaD_72dmxPEU0Ly43lfHoQuCZ4SzOSd95UPU4oJmbIjNCaikDljih8f7lKM0FlKS4w5VbQ4RSNKGBFS4THC82oDuQ1-E0PXgcuavnWtb7JQZ9CBHZ59ylqfNbFav4OHc3RSV12Ci_05QW-PD6-zp3zxMn-e3S9yyzjf5MQ5RbEkxjphqFFCFbICwWRhMcXWSFNzVwoMynHjSs5KpTDHjBalAeMkm6CbXe46ho8e0kav2mSh6yoPoU9allhKqrgY5PUfuQx99MNyA-KUcMzLAd3ukI0hpQi1Xsd2VcVPTbDe9qi_e9TbHjUb-NU-szcrcAf8U9wA8h1Iw5dvIP4O_TfwCza7fFM</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Williams, J. R.</creator><creator>Low, Tony</creator><creator>Lundstrom, M. S.</creator><creator>Marcus, C. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20110401</creationdate><title>Gate-controlled guiding of electrons in graphene</title><author>Williams, J. R. ; Low, Tony ; Lundstrom, M. S. ; Marcus, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-1dd92081bcd7b2b97948ae7384c020cb8bf5d670e9d5bd6536990503246bebd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/925/357/918</topic><topic>639/925/357/918/1052</topic><topic>Chemistry and Materials Science</topic><topic>Graphene</topic><topic>letter</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, J. R.</creatorcontrib><creatorcontrib>Low, Tony</creatorcontrib><creatorcontrib>Lundstrom, M. S.</creatorcontrib><creatorcontrib>Marcus, C. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, J. R.</au><au>Low, Tony</au><au>Lundstrom, M. S.</au><au>Marcus, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate-controlled guiding of electrons in graphene</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>6</volume><issue>4</issue><spage>222</spage><epage>225</epage><pages>222-225</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronic systems, including the magnetic focusing
1
and electrostatic lensing
2
of electrons. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogues of optical devices with both positive and negative indices of refraction
3
. Here, we use the gate-controlled density of both p and n carrier types in graphene to demonstrate the electronic analogue of fibre-optic guiding
4
,
5
,
6
,
7
,
8
. Two basic effects are investigated: bipolar p–n junction guiding, based on the principle of angle-selective transmission through the interface between the graphene and the p–n junction; and unipolar fibre-optic guiding, using total internal reflection controlled by carrier density. We also demonstrate modulation of the guiding efficiency through gating, and comparison of these data with numerical simulations indicates that guiding performance is limited by the roughness of the interface. The development of p–n and fibre-optic guiding in graphene may lead to electrically reconfigurable wiring in high-mobility devices.
Gate control of positive and negative carriers in graphene is used to guide current in a manner analogous to the guiding of light by an optical fibre.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21317890</pmid><doi>10.1038/nnano.2011.3</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2011-04, Vol.6 (4), p.222-225 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_860882957 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/925/357/918 639/925/357/918/1052 Chemistry and Materials Science Graphene letter Materials Science Nanotechnology Nanotechnology and Microengineering Optics Simulation |
title | Gate-controlled guiding of electrons in graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate-controlled%20guiding%20of%20electrons%20in%20graphene&rft.jtitle=Nature%20nanotechnology&rft.au=Williams,%20J.%20R.&rft.date=2011-04-01&rft.volume=6&rft.issue=4&rft.spage=222&rft.epage=225&rft.pages=222-225&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2011.3&rft_dat=%3Cproquest_cross%3E2340733321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865215056&rft_id=info:pmid/21317890&rfr_iscdi=true |