One-point turbulence structure tensors
The dynamics of the evolution of turbulence statistics depend on the structure of the turbulence. For example, wavenumber anisotropy in homogeneous turbulence is known to affect both the interaction between large and small scales (Kida & Hunt 1989), and the non-local effects of the pressure–stra...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2001-02, Vol.428, p.213-248 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 248 |
---|---|
container_issue | |
container_start_page | 213 |
container_title | Journal of fluid mechanics |
container_volume | 428 |
creator | KASSINOS, S. C. REYNOLDS, W. C. ROGERS, M. M. |
description | The dynamics of the evolution of turbulence statistics depend on the structure of
the turbulence. For example, wavenumber anisotropy in homogeneous turbulence is
known to affect both the interaction between large and small scales (Kida & Hunt
1989), and the non-local effects of the pressure–strain-rate correlation in the one-point
Reynolds stress equations (Reynolds 1989; Cambon et al. 1992). Good quantitative
measures of turbulence structure are easy to construct using two-point or spectral
data, but one-point measures are needed for the Reynolds-averaged modelling of
engineering flows. Here we introduce a systematic framework for exploring the role of
turbulence structure in the evolution of one-point turbulence statistics. Five one-point
statistical measures of the energy-containing turbulence structure are introduced and
used with direct numerical simulations to analyse the role of turbulence structure
in several cases of homogeneous and inhomogeneous turbulence undergoing diverse
modes of mean deformation. The one-point structure tensors are found to be useful
descriptors of turbulence structure, and lead to a deeper understanding of some rather
surprising observations from DNS and experiments. |
doi_str_mv | 10.1017/S0022112000002615 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_860396540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112000002615</cupid><sourcerecordid>1398949251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-869b4480ef4ea7d118333038ff073572c7c98589173284050b682f3881b43edb3</originalsourceid><addsrcrecordid>eNp9kFtLw0AQhRdRsF5-gG9FQX2Jzt4nj1IvFcVSL8_LZruRaJrU3QT035vQoqDovAzD-WY4cwjZo3BCgerTBwDGKGXQF1NUrpEBFSpNtBJynQx6Oen1TbIV4wsA5ZDqATmcVD5Z1EXVDJs2ZG3pK-eHsQmt62Y_bHwV6xB3yEZuy-h3V32bPF1ePI7Gye3k6np0dps4KdMmQZVmQiD4XHirZ5Qi5xw45jloLjVz2qUoMaWaMxQgIVPIco5IM8H9LOPb5Gh5dxHqt9bHxsyL6HxZ2srXbTSogKdKCujI439JqgTjXQIgO3T_B_pSt6Hq_jCMAiIKxjqILiEX6hiDz80iFHMbPgwF00dsfkXc7RysDtvobJkHW7kifi2iRsZ6p8mSKmLj379UG16N0lxLo66m5vxyPL65n94Z7Hi-cmLnWShmz_7b799ePgHY8ZS9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210888422</pqid></control><display><type>article</type><title>One-point turbulence structure tensors</title><source>Cambridge Journals</source><creator>KASSINOS, S. C. ; REYNOLDS, W. C. ; ROGERS, M. M.</creator><creatorcontrib>KASSINOS, S. C. ; REYNOLDS, W. C. ; ROGERS, M. M.</creatorcontrib><description>The dynamics of the evolution of turbulence statistics depend on the structure of
the turbulence. For example, wavenumber anisotropy in homogeneous turbulence is
known to affect both the interaction between large and small scales (Kida & Hunt
1989), and the non-local effects of the pressure–strain-rate correlation in the one-point
Reynolds stress equations (Reynolds 1989; Cambon et al. 1992). Good quantitative
measures of turbulence structure are easy to construct using two-point or spectral
data, but one-point measures are needed for the Reynolds-averaged modelling of
engineering flows. Here we introduce a systematic framework for exploring the role of
turbulence structure in the evolution of one-point turbulence statistics. Five one-point
statistical measures of the energy-containing turbulence structure are introduced and
used with direct numerical simulations to analyse the role of turbulence structure
in several cases of homogeneous and inhomogeneous turbulence undergoing diverse
modes of mean deformation. The one-point structure tensors are found to be useful
descriptors of turbulence structure, and lead to a deeper understanding of some rather
surprising observations from DNS and experiments.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112000002615</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Anisotropy ; Computational fluid dynamics ; Evolution ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Isotropic turbulence; homogeneous turbulence ; Mathematical analysis ; Physics ; Statistics ; Tensors ; Turbulence ; Turbulence simulation and modeling ; Turbulent flow ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 2001-02, Vol.428, p.213-248</ispartof><rights>2001 Cambridge University Press</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-869b4480ef4ea7d118333038ff073572c7c98589173284050b682f3881b43edb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112000002615/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=878220$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KASSINOS, S. C.</creatorcontrib><creatorcontrib>REYNOLDS, W. C.</creatorcontrib><creatorcontrib>ROGERS, M. M.</creatorcontrib><title>One-point turbulence structure tensors</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The dynamics of the evolution of turbulence statistics depend on the structure of
the turbulence. For example, wavenumber anisotropy in homogeneous turbulence is
known to affect both the interaction between large and small scales (Kida & Hunt
1989), and the non-local effects of the pressure–strain-rate correlation in the one-point
Reynolds stress equations (Reynolds 1989; Cambon et al. 1992). Good quantitative
measures of turbulence structure are easy to construct using two-point or spectral
data, but one-point measures are needed for the Reynolds-averaged modelling of
engineering flows. Here we introduce a systematic framework for exploring the role of
turbulence structure in the evolution of one-point turbulence statistics. Five one-point
statistical measures of the energy-containing turbulence structure are introduced and
used with direct numerical simulations to analyse the role of turbulence structure
in several cases of homogeneous and inhomogeneous turbulence undergoing diverse
modes of mean deformation. The one-point structure tensors are found to be useful
descriptors of turbulence structure, and lead to a deeper understanding of some rather
surprising observations from DNS and experiments.</description><subject>Anisotropy</subject><subject>Computational fluid dynamics</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Statistics</subject><subject>Tensors</subject><subject>Turbulence</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kFtLw0AQhRdRsF5-gG9FQX2Jzt4nj1IvFcVSL8_LZruRaJrU3QT035vQoqDovAzD-WY4cwjZo3BCgerTBwDGKGXQF1NUrpEBFSpNtBJynQx6Oen1TbIV4wsA5ZDqATmcVD5Z1EXVDJs2ZG3pK-eHsQmt62Y_bHwV6xB3yEZuy-h3V32bPF1ePI7Gye3k6np0dps4KdMmQZVmQiD4XHirZ5Qi5xw45jloLjVz2qUoMaWaMxQgIVPIco5IM8H9LOPb5Gh5dxHqt9bHxsyL6HxZ2srXbTSogKdKCujI439JqgTjXQIgO3T_B_pSt6Hq_jCMAiIKxjqILiEX6hiDz80iFHMbPgwF00dsfkXc7RysDtvobJkHW7kifi2iRsZ6p8mSKmLj379UG16N0lxLo66m5vxyPL65n94Z7Hi-cmLnWShmz_7b799ePgHY8ZS9</recordid><startdate>20010210</startdate><enddate>20010210</enddate><creator>KASSINOS, S. C.</creator><creator>REYNOLDS, W. C.</creator><creator>ROGERS, M. M.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20010210</creationdate><title>One-point turbulence structure tensors</title><author>KASSINOS, S. C. ; REYNOLDS, W. C. ; ROGERS, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-869b4480ef4ea7d118333038ff073572c7c98589173284050b682f3881b43edb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Anisotropy</topic><topic>Computational fluid dynamics</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Statistics</topic><topic>Tensors</topic><topic>Turbulence</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KASSINOS, S. C.</creatorcontrib><creatorcontrib>REYNOLDS, W. C.</creatorcontrib><creatorcontrib>ROGERS, M. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KASSINOS, S. C.</au><au>REYNOLDS, W. C.</au><au>ROGERS, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-point turbulence structure tensors</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2001-02-10</date><risdate>2001</risdate><volume>428</volume><spage>213</spage><epage>248</epage><pages>213-248</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The dynamics of the evolution of turbulence statistics depend on the structure of
the turbulence. For example, wavenumber anisotropy in homogeneous turbulence is
known to affect both the interaction between large and small scales (Kida & Hunt
1989), and the non-local effects of the pressure–strain-rate correlation in the one-point
Reynolds stress equations (Reynolds 1989; Cambon et al. 1992). Good quantitative
measures of turbulence structure are easy to construct using two-point or spectral
data, but one-point measures are needed for the Reynolds-averaged modelling of
engineering flows. Here we introduce a systematic framework for exploring the role of
turbulence structure in the evolution of one-point turbulence statistics. Five one-point
statistical measures of the energy-containing turbulence structure are introduced and
used with direct numerical simulations to analyse the role of turbulence structure
in several cases of homogeneous and inhomogeneous turbulence undergoing diverse
modes of mean deformation. The one-point structure tensors are found to be useful
descriptors of turbulence structure, and lead to a deeper understanding of some rather
surprising observations from DNS and experiments.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112000002615</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2001-02, Vol.428, p.213-248 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_860396540 |
source | Cambridge Journals |
subjects | Anisotropy Computational fluid dynamics Evolution Exact sciences and technology Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) Isotropic turbulence homogeneous turbulence Mathematical analysis Physics Statistics Tensors Turbulence Turbulence simulation and modeling Turbulent flow Turbulent flows, convection, and heat transfer |
title | One-point turbulence structure tensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-point%20turbulence%20structure%20tensors&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=KASSINOS,%20S.%20C.&rft.date=2001-02-10&rft.volume=428&rft.spage=213&rft.epage=248&rft.pages=213-248&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112000002615&rft_dat=%3Cproquest_cross%3E1398949251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210888422&rft_id=info:pmid/&rft_cupid=10_1017_S0022112000002615&rfr_iscdi=true |