One-point turbulence structure tensors

The dynamics of the evolution of turbulence statistics depend on the structure of the turbulence. For example, wavenumber anisotropy in homogeneous turbulence is known to affect both the interaction between large and small scales (Kida & Hunt 1989), and the non-local effects of the pressure–stra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2001-02, Vol.428, p.213-248
Hauptverfasser: KASSINOS, S. C., REYNOLDS, W. C., ROGERS, M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue
container_start_page 213
container_title Journal of fluid mechanics
container_volume 428
creator KASSINOS, S. C.
REYNOLDS, W. C.
ROGERS, M. M.
description The dynamics of the evolution of turbulence statistics depend on the structure of the turbulence. For example, wavenumber anisotropy in homogeneous turbulence is known to affect both the interaction between large and small scales (Kida & Hunt 1989), and the non-local effects of the pressure–strain-rate correlation in the one-point Reynolds stress equations (Reynolds 1989; Cambon et al. 1992). Good quantitative measures of turbulence structure are easy to construct using two-point or spectral data, but one-point measures are needed for the Reynolds-averaged modelling of engineering flows. Here we introduce a systematic framework for exploring the role of turbulence structure in the evolution of one-point turbulence statistics. Five one-point statistical measures of the energy-containing turbulence structure are introduced and used with direct numerical simulations to analyse the role of turbulence structure in several cases of homogeneous and inhomogeneous turbulence undergoing diverse modes of mean deformation. The one-point structure tensors are found to be useful descriptors of turbulence structure, and lead to a deeper understanding of some rather surprising observations from DNS and experiments.
doi_str_mv 10.1017/S0022112000002615
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_860396540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112000002615</cupid><sourcerecordid>1398949251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-869b4480ef4ea7d118333038ff073572c7c98589173284050b682f3881b43edb3</originalsourceid><addsrcrecordid>eNp9kFtLw0AQhRdRsF5-gG9FQX2Jzt4nj1IvFcVSL8_LZruRaJrU3QT035vQoqDovAzD-WY4cwjZo3BCgerTBwDGKGXQF1NUrpEBFSpNtBJynQx6Oen1TbIV4wsA5ZDqATmcVD5Z1EXVDJs2ZG3pK-eHsQmt62Y_bHwV6xB3yEZuy-h3V32bPF1ePI7Gye3k6np0dps4KdMmQZVmQiD4XHirZ5Qi5xw45jloLjVz2qUoMaWaMxQgIVPIco5IM8H9LOPb5Gh5dxHqt9bHxsyL6HxZ2srXbTSogKdKCujI439JqgTjXQIgO3T_B_pSt6Hq_jCMAiIKxjqILiEX6hiDz80iFHMbPgwF00dsfkXc7RysDtvobJkHW7kifi2iRsZ6p8mSKmLj379UG16N0lxLo66m5vxyPL65n94Z7Hi-cmLnWShmz_7b799ePgHY8ZS9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210888422</pqid></control><display><type>article</type><title>One-point turbulence structure tensors</title><source>Cambridge Journals</source><creator>KASSINOS, S. C. ; REYNOLDS, W. C. ; ROGERS, M. M.</creator><creatorcontrib>KASSINOS, S. C. ; REYNOLDS, W. C. ; ROGERS, M. M.</creatorcontrib><description>The dynamics of the evolution of turbulence statistics depend on the structure of the turbulence. For example, wavenumber anisotropy in homogeneous turbulence is known to affect both the interaction between large and small scales (Kida &amp; Hunt 1989), and the non-local effects of the pressure–strain-rate correlation in the one-point Reynolds stress equations (Reynolds 1989; Cambon et al. 1992). Good quantitative measures of turbulence structure are easy to construct using two-point or spectral data, but one-point measures are needed for the Reynolds-averaged modelling of engineering flows. Here we introduce a systematic framework for exploring the role of turbulence structure in the evolution of one-point turbulence statistics. Five one-point statistical measures of the energy-containing turbulence structure are introduced and used with direct numerical simulations to analyse the role of turbulence structure in several cases of homogeneous and inhomogeneous turbulence undergoing diverse modes of mean deformation. The one-point structure tensors are found to be useful descriptors of turbulence structure, and lead to a deeper understanding of some rather surprising observations from DNS and experiments.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112000002615</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Anisotropy ; Computational fluid dynamics ; Evolution ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Isotropic turbulence; homogeneous turbulence ; Mathematical analysis ; Physics ; Statistics ; Tensors ; Turbulence ; Turbulence simulation and modeling ; Turbulent flow ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 2001-02, Vol.428, p.213-248</ispartof><rights>2001 Cambridge University Press</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-869b4480ef4ea7d118333038ff073572c7c98589173284050b682f3881b43edb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112000002615/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=878220$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KASSINOS, S. C.</creatorcontrib><creatorcontrib>REYNOLDS, W. C.</creatorcontrib><creatorcontrib>ROGERS, M. M.</creatorcontrib><title>One-point turbulence structure tensors</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The dynamics of the evolution of turbulence statistics depend on the structure of the turbulence. For example, wavenumber anisotropy in homogeneous turbulence is known to affect both the interaction between large and small scales (Kida &amp; Hunt 1989), and the non-local effects of the pressure–strain-rate correlation in the one-point Reynolds stress equations (Reynolds 1989; Cambon et al. 1992). Good quantitative measures of turbulence structure are easy to construct using two-point or spectral data, but one-point measures are needed for the Reynolds-averaged modelling of engineering flows. Here we introduce a systematic framework for exploring the role of turbulence structure in the evolution of one-point turbulence statistics. Five one-point statistical measures of the energy-containing turbulence structure are introduced and used with direct numerical simulations to analyse the role of turbulence structure in several cases of homogeneous and inhomogeneous turbulence undergoing diverse modes of mean deformation. The one-point structure tensors are found to be useful descriptors of turbulence structure, and lead to a deeper understanding of some rather surprising observations from DNS and experiments.</description><subject>Anisotropy</subject><subject>Computational fluid dynamics</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Statistics</subject><subject>Tensors</subject><subject>Turbulence</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kFtLw0AQhRdRsF5-gG9FQX2Jzt4nj1IvFcVSL8_LZruRaJrU3QT035vQoqDovAzD-WY4cwjZo3BCgerTBwDGKGXQF1NUrpEBFSpNtBJynQx6Oen1TbIV4wsA5ZDqATmcVD5Z1EXVDJs2ZG3pK-eHsQmt62Y_bHwV6xB3yEZuy-h3V32bPF1ePI7Gye3k6np0dps4KdMmQZVmQiD4XHirZ5Qi5xw45jloLjVz2qUoMaWaMxQgIVPIco5IM8H9LOPb5Gh5dxHqt9bHxsyL6HxZ2srXbTSogKdKCujI439JqgTjXQIgO3T_B_pSt6Hq_jCMAiIKxjqILiEX6hiDz80iFHMbPgwF00dsfkXc7RysDtvobJkHW7kifi2iRsZ6p8mSKmLj379UG16N0lxLo66m5vxyPL65n94Z7Hi-cmLnWShmz_7b799ePgHY8ZS9</recordid><startdate>20010210</startdate><enddate>20010210</enddate><creator>KASSINOS, S. C.</creator><creator>REYNOLDS, W. C.</creator><creator>ROGERS, M. M.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20010210</creationdate><title>One-point turbulence structure tensors</title><author>KASSINOS, S. C. ; REYNOLDS, W. C. ; ROGERS, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-869b4480ef4ea7d118333038ff073572c7c98589173284050b682f3881b43edb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Anisotropy</topic><topic>Computational fluid dynamics</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Statistics</topic><topic>Tensors</topic><topic>Turbulence</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KASSINOS, S. C.</creatorcontrib><creatorcontrib>REYNOLDS, W. C.</creatorcontrib><creatorcontrib>ROGERS, M. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KASSINOS, S. C.</au><au>REYNOLDS, W. C.</au><au>ROGERS, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-point turbulence structure tensors</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2001-02-10</date><risdate>2001</risdate><volume>428</volume><spage>213</spage><epage>248</epage><pages>213-248</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The dynamics of the evolution of turbulence statistics depend on the structure of the turbulence. For example, wavenumber anisotropy in homogeneous turbulence is known to affect both the interaction between large and small scales (Kida &amp; Hunt 1989), and the non-local effects of the pressure–strain-rate correlation in the one-point Reynolds stress equations (Reynolds 1989; Cambon et al. 1992). Good quantitative measures of turbulence structure are easy to construct using two-point or spectral data, but one-point measures are needed for the Reynolds-averaged modelling of engineering flows. Here we introduce a systematic framework for exploring the role of turbulence structure in the evolution of one-point turbulence statistics. Five one-point statistical measures of the energy-containing turbulence structure are introduced and used with direct numerical simulations to analyse the role of turbulence structure in several cases of homogeneous and inhomogeneous turbulence undergoing diverse modes of mean deformation. The one-point structure tensors are found to be useful descriptors of turbulence structure, and lead to a deeper understanding of some rather surprising observations from DNS and experiments.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112000002615</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2001-02, Vol.428, p.213-248
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_860396540
source Cambridge Journals
subjects Anisotropy
Computational fluid dynamics
Evolution
Exact sciences and technology
Fluid dynamics
Fluid flow
Fundamental areas of phenomenology (including applications)
Isotropic turbulence
homogeneous turbulence
Mathematical analysis
Physics
Statistics
Tensors
Turbulence
Turbulence simulation and modeling
Turbulent flow
Turbulent flows, convection, and heat transfer
title One-point turbulence structure tensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-point%20turbulence%20structure%20tensors&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=KASSINOS,%20S.%20C.&rft.date=2001-02-10&rft.volume=428&rft.spage=213&rft.epage=248&rft.pages=213-248&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112000002615&rft_dat=%3Cproquest_cross%3E1398949251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210888422&rft_id=info:pmid/&rft_cupid=10_1017_S0022112000002615&rfr_iscdi=true