Process development for production of medium chain triglycerides using immobilized lipase in a solvent-free system

The synthesis of tricaprylin, tricaprin, trilaurin, and trimyristin in a solvent-free system was conducted by mixing a commercial immobilized lipase with the organic reagents (glycerol and fatty acid) in a 20-mL batch reactor with constant stirring. The effects of temperature, fatty acid/glycerol mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2002, Vol.98 (1-9), p.997-1008
Hauptverfasser: Langone, M.A.P, Sant'Anna, G.L. Jr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The synthesis of tricaprylin, tricaprin, trilaurin, and trimyristin in a solvent-free system was conducted by mixing a commercial immobilized lipase with the organic reagents (glycerol and fatty acid) in a 20-mL batch reactor with constant stirring. The effects of temperature, fatty acid/glycerol molar ratio, and enzyme concentration on the reaction conversion were determined. The reactions were carried out for 26 h and the nonpolar phase was analyzed by gas chromatography. Appreciable levels of medium chain triglycerides were achieved, except for tricaprylin. The higher selectivity values for the production of triglycerides were attained under the following conditions: a fatty acid/glycerol molar ratio of 5; enzyme concentration of 5 or 9% (w/w); and temperatures of 70 degrees C (tricaprin), 80 degrees C (trilaurin), and 90 degrees C (trimyristin). After completion of the esterification reaction under these conditions, the recovery of the triglyceride and fatty acids, and the reusability of the enzyme were studied. The unreacted fatty acid and the produced triglyceride were satisfactorily recovered. The commercial immobilized lipase was used in 10 consecutive batch reactions at 80 degrees C, with 100% selectivity in the trilaurin and trimyristin synthesis. The possibility of enzyme reuse and the recovery of residual fatty acid are relevant results that contribute to increasing the viability of the process.
ISSN:0273-2289
1559-0291
0273-2289
DOI:10.1385/ABAB:98-100:1-9:997